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1 Content 

 

This document presents an extension of the CONTREX UML/MARTE network 

modelling methodology. This document is complementary to the documentation 

generated so far in CONTREX regarding the definition of a modelling methodology for 

embedded systems and embedded distributed systems [1] and to the related publications 

[6]-[12]. The modelling methodology in turn relies on the CONTREX metamodel [2]. 

As was noticed in D2.2.1 [1], the CONTREX UML/MARTE methodology is built-up 

on top of previous UML/MARTE modelling methodologies (COMPLEX [3] and 

PHARAON [4]). These methodologies supported embedded system modelling for 

design space exploration and for software synthesis. 

In CONTREX, the modelling methodology is enhanced to support key aspects in the 

modelling and design of mixed-criticality systems (MCS) and systems-of-systems 

(MCSoS) [5]. For it, D2.1.1 introduced criticality in the metamodel. D2.2.1 introduced 

the mechanisms to describe criticality within the model. In CONTREX, criticality has a 

wide meaning, in the sense that criticality can be applied to different modelling 

elements (e.g. application components, platform resources and extra-functional 

properties) and be interpreted according to the context. D2.2.1 also introduced 

improvements, such as contract modelling and polishing of the description of the design 

space to better exploit MARTE.  

D2.2.1 also slightly introduced network modelling. Network modelling is a need to 

enable the methodology to tackle the modelling of embedded distributed systems. As 

will be shown, the CONTREX network modelling methodologies turns around the 

network “node”, as a fundamental component of the system-of-systems. The 

CONTREX network modelling methodology enables a rich variety of modelling 

possibilities of the node. It is required for a compact and coherent modelling of the 

“computing continuum” present in real networks, which can range from small sensors 

or actuators to big data centres. 

This documents extends the work in [1] and in [6]-[12] in order to support a “multi-

level modelling approach” and a more flexible and automated DSE of distributed 

embedded systems. The presented extension also enables a more homogeneous 

integration with previous advances of the Embedded Systems Group of the University 

of Cantabria on the UML/MARTE-based modelling and design of embedded systems 

[3][4]. Section 2 provides an introductory background for a deeper understanding of the 

contribution of the extension proposed. Section 3 literally inserts some of the previous 

work and results for reader convenience. Section 4 introduces the overall network 

methodology under the extended perspective. Remaining sections are devoted to 

introduce the specific features (with emphasis on the extensions).   
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2 Background  

 

The CONTREX modelling methodology has considered a bunch of relevant work 

which has already addressed network modelling from UML, and MARTE. 

Edalab and U.Verona have developed a methodology for UML/MARTE modelling and 

estimation of packet-based networks, mostly focusing on wireless networks [6][7][8]. 

The approach supports the automated generation from UML/MARTE of a SystemC-

based model (relying on the SCNSL library). The simulation of this model enables the 

QoS analysis of the network performance, i.e. how the network performs under the load 

conditions imposed by the application tasks and the network architecture. 

Focusing only on modelling, the methodology supports the description of the network 

architecture, by relying on nodes and abstract channels. Nodes and abstract channels 

enable high-level modelling of network resources. Their attributes reflect computation 

and communication capabilities respectively. In addition, the methodology supports the 

modelling of the distributed application by relying on tasks and dataflows. Tasks are 

mapped on nodes. Dataflows reflect task-to-task communication without a necessary 

match to a fixed abstract channel or path. 

The methodology also introduces the concept of zones and contiguity. These concepts 

enable to group the nodes under zones with the same propagation conditions. The 

concept of contiguity enables the modelling of the Resistance between zones. In this 

methodology, the Resistance enables a high-level modelling of the spoil of the 

transmission attributes for those abstract channels crossing zones. 

In [8], the [6][7] modelling methodology was extended to support the design space 

exploration of both HW/SW architectures and network architectures, and to obtain out 

of it a simulation model, relying on SCoPE+ (for node simulation) and SCNSL (for 

SystemC-based simulation of the network. In [8], the application tasks are described 

through UML activity diagrams (to enable the modelling of the applications mapped to 

the node). 

In [9] the modelling approach basing the work published in [8] is detailed. An important 

difference with regard works in [6][7] is the capability to describe the internal HW 

architecture of the node. In fact, the node is understood as a HW computation resource 

with networking capabilities, i.e. with a network interface. For such a description of the 

node, the component-based approach from [3][4] is adopted. The internal architecture of 

the node has to contain an instance of a network interface component. This view of the 

node enables the modelling of distributed OS and their mapping to one or more nodes. 

 



 

 

8 

 

In [10] for the modelling in UML/MARTE of wireless sensor networks (WSN) was 

present. The primary goals such a methodology are to enable accurate estimations based 

on the detailed modelling of node architectures, and of their deployed SW. Such 

accuracy shall enable analysis of the WSN for better optimization, especially for power 

consumption, a main limiting factor in WSN design; and for realistic analysis of WSN 

behavior under attack conditions, which typically leads node SW to corner cases. 

Complementary to these objectives, the methodology also makes a proposal for the 

modelling of the environment agents which that attack the network introducing noise 

and traffic. 

The modelling methodology (being detailed in [11]) supports separation of concerns by 

means of views. 

Some views support the detailed description of the node internals application, SW 

architecture, HW architecture, etc. In contrast to the approach in [8], where the node 

comprises a set of HW resources, including at least a CPU and a network interface, in 

[10][11], the node is modelled as a complete embedded system, which thus comprises, 

as well as the HW resources, also the platform SW (typically, the RTOS) and 

application software. This enables the description of the embedded distributed system as 

a system-of-systems. 

Other views are devoted to the description of the network. Specifically, one view covers 

the declaration of the different types of nodes, while other view enables their 

instantiation and interconnection to describe the network architecture.  

As the methodology in [8][9] , the [10][11] methodology, uses network interfaces. It 

also uses battery elements (to model energy capacity of the node) and sensor devices. 

The aforementioned work has meant an evident advance on network modelling in 

MARTE. However, further features are still required to cover the CONTREX 

modellings needs, driven by the modelling of complex real network in the context of 

MCS design. 

First, there is a lack of a “multi-level approach”. Each of the aforementioned 

methodologies cover a specific perspective of the node. That is, [6][7] provide and 

abstract view, [8][9] a view of a node as a HW resource, and [10][11] as a complete 

system. However, a real network will in general reflect a “computing spectrum”. Nodes´ 

computation capabilities can range from a simple amount of logic, to large servers. 

Similarly their respective functionalities range much in size and complexity. Some 

nodes will be “closed” systems, in the sense that they do not admit further application 

SW mapping, while others can admit the migration of further functionality.  Moreover, 

thinking in terms of modelling needs, the designer might want to model in detail some 

nodes, while not others. There are several reasons for it, e.g. because there is no detailed 

information about the internal architecture of the node, because such a detail is not 

required for yielding the accuracy, while the modelling and/or the associated simulation 

effort to estimate the performance of a networked system were every node is modelled 

in whole details is not expendable. Therefore, in general, each node requires its own 

way of modelling, suitable to the modeller and designer needs.   
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The aforementioned methodologies are not sufficiently flexible to specify a design 

space. Specifically, regarding the way mappings are expressed in the network 

modelling. In the aforementioned methodologies tasks-to-node mappings are fixed, 

either through the task-node association in the deployment diagram [8], either through 

fixed allocations through associations in a composite diagram. This mechanism is quite 

inefficient in exploration, since it involves model edition (and thus the regeneration of 

the simulation model), which is a time-costly process, for the exploration of 

alternatives. The same can be said for the modelling of the mapping of nodes to zones. 

Additionally, specific support stating how to link to the modelling of the physical 

environment is required. The design of a control embedded systems (CES) and control 

embedded distributed systems (CEDS) requires the modelling of the closed-loops 

between the CES/CDES and the environment. In other words, it requires to support the 

modelling of a cyber-physical system and of a cyber-physical system-of systems. In the 

context of the network modelling methodology, it has implications on the node 

description.  

The concepts of zones and contiguity introduced in [6][7] focuses on the modelling of 

geographical area in terms of effects on the attributes on the communication resources. 

However, a more generic and flexible approach is possible, where other types of zones 

are supported, to reflect geographical areas where certain physical parameter is constant 

(or in certain bounds), and/or which enables a specific type of analysis. In such a 

context, different zone types can be present in the model, and a node can belong to one 

zone of each type. 
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3 Previous Results in CONTREX 

As was mentioned, [9] is a work-in progress in the context of CONTREX. This work in 

turn already relies on other previous results which are reminded in the following sub-

sections. 

3.1 CONTREX Network Metamodel (CONTREX D2.1.1) 

 

In the following paragraphs, the content of section 5 of D2.1.1 referring to the meta 

model for network modelling is literally reproduced for convenience, since it is the 

fundament for the network modelling methodology. This description has to be 

understood as a “network domain view”
1
. 

The network domain view provides a generic ontology for the modelling of networks, 

valid for different languages (at least for those present in CONTREX). Furthermore, it 

has been done relying on MARTE existing domain concepts, such the extension of new 

concepts is minimized. 

Here (in section 5 of CONTREX D2.1.1) we include modeling elements that are useful 

to realize the validation of distributed applications deployed on communication 

resources subject to certain error rate. This allows for the modeling of embedded 

systems connected through partially reliable networks and a high level characterization 

of the network.  

MARTE is suitable for the low level accounting of resource usage in time, and this is 

also applicable to the networks when they are schedule with concrete arbitration 

strategies; but when general purpose networks are used or when not detailed 

accounting of networking needs is available, a high level characterization of 

communication needs and available capacities can be used. This scales up well not only 

to general purposes traditional internet protocols but also to wireless and mobile 

communication. 

This chapter is organized in three sections. The first consider extensions to MARTE that 

help to model the network topology, and the overheads on processors due to the 

handling of packets to be sent and received. The second proposes extensions to the 

modeling of the necessary workloads, both, in communication and computing oriented. 

The last proposes a complete set of modeling elements to capture specific analysis 

contexts for the validation of required communication needs deployed on the available 

platforms. 

  

                                                 

1
 The MARTE standard systematically introduces a “domain view” for presenting the fundamental 

modelling concepts, before introducing the actual elements which compose a MARTE sub-profile. 
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3.1.1 Topology and platform overheads due to communication 

Since MARTE profile is devoted to model real time embedded systems, it lacks precise 

semantics related to networked embedded systems which are mainly for the 

communication aspects between embedded elements. 

Fortunately, and contrary to an often expressed opinion, MARTE had addressed the 

main elements of such systems and it is not necessary to add new fundamental modeling 

concepts to MARTE profile. Instead, the work being done in the specification consisted 

of defining new stereotypes for the communication aspects of embedded systems such as 

network interfaces.  

Therefore, we have introduced new stereotypes to extend the semantics of MARTE 

profile, stereotypes are:  

1. AbstractChannel, 

2. NetworkInterface  

CommunicationResource

elementSize : Integer

CommunicationMedia

packetSize : Integer

CommunicationEndPoint

0..* 1..*mediaendPoint

overhead : WorkloadBehabior

NetworkInterface

ComputingResource

speedFactor: NFP_Real 

ProcessingResource

0..*

1..*host

nwInterface

resMult: Integer

isProtected : Boolean

isActive : Boolean

Resource

errorRate : NFP_Percentage

wireless: Boolean

AbstractChannel

1..* nwInterface

 

 A ProcessingResource generalizes the concepts of CommunicationMedia, 

ComputingResource, and active DeviceResource. It introduces an element that 

abstracts the fundamental capability of performing any behavior assigned to the 
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active classifiers of the modeled system. Fractions of this capacity are brought 

to the SchedulableResources that require it. 

 A CommunicationResource represents any resource used for communication 

and may be considered as a collector of communication services. It generalizes 

the two kinds of communication resources defined, communicationEndpoint and 

communicationMedia. 

 A ComputingResource represents either virtual or physical processing devices 

capable of storing and executing program code. Hence, its fundamental service 

is to compute, what in fact is to change the values of data without changing their 

location. It is active and protected. 

 A CommunicationEndPoint acts as a terminal for connecting to a 

communication media, and it is characterized by the size of the packet handled 

by the endpoint. This size may or may not correspond to the media element size. 

Concrete services provided by a CommunicationEndPoint include the sending 

and receiving of data, as well as a notification service able to trigger an activity 

in the application. 

 A CommunicationMedia represents the means to transport information from 

one location to another (e.g., message of data). It has as an attribute the size of 

the elements transmitted; as expected, this definition is related to the resource 

base clock. For example, if the communication media represents a bus, and the 

clock is the bus speed, “element size” would be the width of the bus, in bits. If 

the communication media represents a layering of protocols, “element size” 

would be the frame size of the uppermost protocol. 

 A NetworkInterface acts as an interface to connect a physical device with a 

communication media. It has an attribuite WorkloadBehavior which represents 

a given load of processing flows triggered by external (e.g., environmental 

events) or internal (e.g., a timer of the communication protocol) stimuli. The 

processing flows are modeled as a set of related steps that contend for use of 

processing resources and other shared resources.  It may contain the 

communication protocol agent. 

 A Node represents physical processing devices capable of storing and executing 

program code. It can be seen as a container of tasks. At the end of the 

application design flow, nodes will become HW entities with CPU and network 

interface and tasks will be implemented either as HW components or as SW 

processes. It can be fixed or mobile node. 

 An AbstractChannel is a generalization of network channels since it contains 

the physical channel, and all the protocol entities up to level N-1. It has an 

attribute errorRate which defines the bit error rate of it. It has an attribute 

wireless to define if it is wire or wireless channel. 
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3.1.2 Extensions for modeling general purpose networking workloads 

 

As it was mentioned in section 5.1 that MARTE has provided the main elements for 

modeling embedded systems but it lacks some semantics related to networked embedded 

systems.  

Therefore, MARTE elements may be extended to compensate such lack. For example, 

Quality of Service of the communication media between embedded device in terms of, 

delay, throughput, error rate, is considered as an important feature to measure the 

performance of such applications.   

Therefore, we have introduced new stereotypes to extend the semantics of MARTE 

profile, stereotypes are:  

1- CommunicationRequirements 

2- CommunicatingTask 

msgSize: NFP_DataSize

CommunicationStep

maxErrorRate: NFP_Percentage

maxThroughput: NFP_Frequency

maxDelay: NFP_Duration

CommunicationRequirements

RtUint

CommunicatingTask

isDynamic : Boolean

isMain : Boolean

memorySize : NFP_DataSize

srPoolPolicy : PoolMgtPolicy

srPoolWaitingTime : NFP_Duration 

requiresMobility: Boolean

isPeriodic: Boolean
 

 

 A CommunicationStep is an operation of sending a message over a 

CommunicationResource that connects the host of its predecessor Step, to the 

host of its successor Step. 

 A CommunicationRequirements are the requirements of a data flow to be 

assigned to an abstract channel and that to establish the communication 

between two tasks. It has three attribuites, maxErrorRate is the maximum 

number of errors tolerated by the destination; maxThroughput is the maximum 

amount of transmitted information in the time unit; maxDelay is the maximum 

permitted time to deliver data to destination. 
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 A RtUnit is real-time unit and it owns at least one schedulable resource but can 

also have several ones. If its dynamic attribute is set to true, the resources are 

created dynamically when required. In the other case, the real-time unit has a 

pool of scheduling resources. When no schedulable resources are available in 

the possible, the real-time unit may either wait indefinitely for a resource to be 

released, or wait only a given amount of time (specified by its poolWaitingTime 

attribute), or dynamically increase its pool of thread to adapt to the demand, or 

generate an exception. A real-time unit may own behaviors. It also owns a 

message queue used to store incoming messages. The size of this message queue 

may be infinite or limited. In the latter case, the queue size is specified by its 

maxSize attribute. In addition, a real-time unit owns a specific behavior, called 

operational mode. This behavior takes usually the form of a state-based 

behavior where states represent a configuration of the real-time unit and 

transition denotes reconfigurations of the unit. 

 A CommunicatingTask represents a basic functionality of the whole 

application; it takes some data as input and provides some output. It should be 

allocated in a Node to perform its operation. It has an attribute named 

requiresMobility to define its requirement to be allocated in a mobile or fixed 

node. It can be periodic or aperiodic task and it is specified from isPeriodic 

attribute. 

 

3.1.3 Allocation and models for network analysis 

 In this section we extend MARTE communciationChannel element by a new stereotype 

for DataFlow to express the communication requirements of the data flow from the 

communication channel.  

msgSize: NFP_DataSize

utilization: NFP_Real 

CommunicationChannel

communciationRequirements: 

CommunicationRequirements  [*]
taskSource: Task [*]

taskDestination: Task [*]

DataFlow

 

 

 A CommunicationChannel is logical communications layer connecting 

SchedulableResources. 
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 A DataFlow represents the communication requirements between two tasks; 

output from a source task (taskSource) is delivered as input to a destination task 

(taskDestination). It has an attribuite communciationRequirements which 

describes the communication requires to perform the communcaition between 

two tasks. It should be allocated in an abstractChannel to perform its 

operations. 

 

3.2 CONTREX Network Profile 

As a result of the metamodeling effort a first profile version has been generated and 

reported in [12] and in the D2.2.1 CONTREX deliverable. Figure 1 reproduced it here 

for convenience. 
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Figure 1 The CONTREX network profile provides additional BasicNFP types and two subprofiles 

for describing workloads and network resources. 

 

3.3 CONTREX Modelling Methodology (CONTREX D2.2.1) 

The D2.2.1 deliverable presented the preliminary version of the modelling 

methodology. As was mentioned, this document is mostly focused on the modelling of 

an embedded system and slightly introduced network modelling. 
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4 Network UML/MARTE modelling 
methodology 

4.1 Purpose and contributions 

The CONTREX network modelling methodology fills the gap in the currently available 

UML/MARTE modelling methodologies, suitable for embedded systems modelling, but 

yet inefficient for network modelling. 

The CONTREX network modelling methodology supports a wide concept of node, a 

fundamental element in network modelling, to enable the modelling of the “computing 

spectrum” present in the networks of the IoT era. Being oriented to embedded 

distributed systems, the methodology covers models where the node is understood as a 

computational element with network interface capability. Moreover, the methodology 

supports the modelling of nodes of any type (switches, routers, data center, super-

computers) which range different computational and functional capabilities, at different 

abstraction levels. 

Following, a list of contributions of the CONTREX network modelling methodology to 

the SoA is given, accounting for the aforementioned capability is given: 

 It enables a multi-level modelling approach. The approach is multi-level in the 

sense stated in [5], that is, that the methodology enables modelling network 

nodes of different types and at different levels of abstraction. 

 It enables the flexible mapping and exploration of a distributed applications into 

a network; 

 It establishes the link to model CPS and CPSoS; 

 It extends the concept of zones, by supporting several types of them in the same 

model, and makes the mapping to zones more flexible for exploration. 

The CONTREX network modelling methodology is smoothly integrated with the 

embedded system modelling. A component-based modelling approach and a reduced 

but efficient set of modelling techniques is homogeneously applied at every modelling 

level: application, SW platform, HW platform, and network.  

By relying on the CONTREX metamodel, the concepts presented in the background 

methodologies shown in section 2 are covered. 

4.2 Modelling elements 

The modelling elements to be employed in the network modelling methodology are the 

ones defined in the CONTREX metamodel. 
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As a reference, the profile shown in section 3.2 is used. Required extensions of that 

profile will be reported in place. Most of them are simply profile extensions which do 

not require an actual extension of the metamodel, keep back compatibility with the 

modelling approaches proposed in [6][7][8], and which enable a more convenient and 

flexible UML modelling style.  

4.3 Network modelling views 

The CONTREX modelling methodology supports two specific views for network 

modelling: the node view and the network view. The views are specified as UML 

packages with the <<NodeView>> and <<NetworkView>> stereotypes. 

The node view serves to declare the different types of network nodes present in the 

network mode. The network view is used to capture the network architecture. 

 

Figure 2 Network and node views. 

Node and network views hang from the root of the model, in the same level as other 

views devoted to the description of an embedded system, such as the application view, 

the SW Platform view, and the HW resources view.  

As reflected in Figure 3, the network model depends on the information captured in the 

application, SW platform, and HW resources views. It means that, for the completion of 

the capture of the node view and of the network view, the capture of the application, 

SW platform, and HW resources views has to be completed first. 

 

Figure 3 Network and node views depend on the application, SW platform and HW resources view. 
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However, to the effects of modelling workflow, the concurrent capture of some 

elements in the different views is possible. For instance, the architecture of the network 

can be captured upon nodes incompletely captured, i.e. where not all of their attribute 

values have been fixed. 

4.4 Network Architecture 

The network architecture is a primary information with relevant impact on the overall 

performance of either a System-of-Systems or a distributed application. The network 

architecture consist of the set of node instances present in the network and how they are 

interconnected. In other words, the network architecture captures the network topology. 

 

Figure 4 .Example of network architecture. Five network nodes of three node types are instanced in 

a “network_ex” component located in the network view. 

The network architecture is described in the network view, i.e. <<NetworkView>> 

package. 

Within the <<NetworkView>> package, a network component has to be declared. A 

composite diagram associated to the network component is used to capture the network 

architecture. 

UML properties are used to capture node instances, e.g. “Tsens1” or “net_node1” in 

Figure 4. The type of node instance is captured by typing the UML property with one of 

the node components declared in the node view. For instance, “Tsens1” node of type 

“T_sens_str”, and “net_node1” is a node of type “net_node”, e. g. to model a sensor and 

a router node. 

Port-to-Port connectors enable to link nodes and model ideal point-to-point connection 

among network nodes. 

Moreover, modelling of “non-ideal” point-to-point communication links is supported by 

stereotyping the port-to-port connectors as <<AbstractChannel>>, as shown in Figure 4. 

The <<AbstractChannel>> supports abstract modeling of non-ideal point-to-point 

transmission characteristics. Specifically, it supports the modeling of: 

 Error rate (provided by <<AbstractChannel>>) 

 Throughput (Hz) (inherited) 
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 Capacity (Tx Rate) (inherited) 

These characteristics are due to the consideration of low-level factors, e.g. type of 

transmission physical media, material of the wire, distance between access points, etc.  

The aforementioned attributes of <<AbstractChannel>> provide a convenient 

abstraction for data-packet network modelling as long traffic conditions and low-level 

factors, like distance among nodes, can be considered stable (fixed) along time. 

If this is not the case, annotated values can be considered for the initial state of the QoS 

of the communication links. 

A main scenario where data links transmission conditions happens where there are 

wireless network involved. To tackle an abstract modelling of it, the methodology 

support stating if the point-to-point link is wireless or not. As was shown in section 3.2, 

the <<AbstractChannel>> stereotype supports the modelling of an important intrinsic 

factor, if the channel is wire or wireless. Zones and contiguity enable taking into 

account mobility while keeping the abstract modelling of node communication 

characteristics. This is discussed in detail in section 4.8. 

Notice also that a network modelling methodology can consider several lower levels of 

detail in the modelling of communication resources, e.g. to account for the impact of 

communication protocols, node distances, geometry, etc. However, such a low-level 

modelling of the underlying communication infrastructure is possible, but it also has an 

additional, non-negligible modelling and simulation cost. 

 

4.5 Node Modelling 

The proposed network modelling methodology provides a rich variety of modelling 

approaches for network nodes. Specifically, the methodology supports the modelling of 

different types of nodes at different abstraction levels. 

The methodology enables the following abstraction levels in the modelling of a node: 

 description of its internal architecture  

 description of a behavioural model 

 as a deterministic or statistic traffic pattern generation/consumption 

Moreover, in the former case, the methodology supports the modelling of a node: as: 

 a HW computation resource 

 a SW/HW platform, i.e. a HW resource with a SW layer which enables call 

computation and communication services, 
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 a complete system, in the sense that the node includes autonomous applications 

which can cooperate with other nodes thanks to the networking capabilities of 

the node. 

Subsection 4.5.1 presents where and how network nodes are declared. The following 

subsections show the mechanisms available to describe a node. 

Subsections 4.5.2, 4.5.3, 4.5.4, refer to detailed node description mechanisms where its 

internal architecture is captured. Subsection 4.5.5 points out where the components used 

to describe the node internal architecture are taken from. 

Subsections 4.5.6 and 4.5.7 refer to more abstract ways to model the nodes. 

4.5.1 Node declaration 

Nodes are declared in the node view, i.e. the <<NodeView>> package. Nodes are 

declared as components with the <<Node>> stereotype applied. 

Figure 5 and Figure 6 show two examples of node declarations.  

 

Figure 5 Example of declaration of nodes whose internal structure is described. 

Figure 5 shows an example where three types of network nodes (a temperature sensor 

node, a network node, and a server node) are declared. 

Figure 6 shows an example whith more types of nodes are declared. For instance, to 

declare temperature and light sensor, and heater and cooler actuator nodes, a network 

(router) node, and a server node. 

 

Figure 6. Example of node declarations for the description of a distributed control of temperature 

and light in a building. 
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In the Figure 6 node view, some colouring has been used to distinguish node types. It 

can be useful, e.g. to help the user to identify node types, according to the own user 

criteria. However, colouring is an UML editor dependent feature, and it is not part of the 

semantic model. 

4.5.2 Description of the node as a HW resource 

The methodology supports the modelling of the node as a cluster of HW resources with 

access to, and that can be accessed from, the network. The node will include at least 

computational HW resources, and HW resources for accessing the network (network 

interface). Eventually, it can also contain other type of hardware resources (memories, 

sensors, actuators, battery, etc). 

The description of the node as a HW resource is similar to the description of the HW 

architecture when a single-system model is developed. That is, a composite diagram is 

associated to the node and instances of the components declared in the HW resources 

view are done and interconnected through port-to-port connectors. 

However, there are specific considerations in the description of nodes as a HW 

resource: 

 Since the node view contains several nodes in general, and the internal 

architecture of the node can be described, a model can contain several HW 

architectures (which is not the case of the single-system scenario in the 

modelling methodology
2
).  

 The HW architecture of the node has to include an instance of a network 

interface component instance. 

 The previous rule requires, in turn, the declaration of at least one network 

interface component within the hardware resources view. 

 The node component has to have at least one flow port, captured as a 

<<PortFlow>> port, which reflects a logical packet traffic interface between the 

node and the rest of the network
3
.  

 The aforementioned flow port has to be associated to a network interface. 

                                                 

2
 Here it is convenient to remind that in the development of a single-system model, e.g. a MPSoC model, 

only one <<System>> component within the architectural view is employed and allowed to capture 

system internal architecture. In contrast, when a network model is developed, the user in general will 

want to be capable to model several sub-systems interconnected among them.  The methodology supports 

it through the capability of declaring several nodes in the node view. Each of those nodes support the 

description of its internal architecture, as it was done for the system component in the single-system 

modelling approach. The result is that the user can develop a System-of-Systems (SoS) model with a 

precise description of each node involved 

3
 Notice that this flow port reflects neither a high-level functional interface, nor a low-level interface, i.e. 

a bit-level or physical description of the network traffic 
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Figure 7. Example of the description of a node as a cluster of HW computational and network 

resources. 

Figure 7 shows an example of the description of the internal architecture of a node as a  

HW resource. 

 

Figure 8. A network interface component declared in the node view. 

The network interface component instance (“netif1”) is captured as a UML component 

with the <<NetworkInterface>> stereotype applied.  

The stereotype provides key attributes in the description of the transmission and 

reception capabilities in the connection of the node to the network. Some of these 

attributes (thresholdPower, txPower, packetsize) are supported by metamodel shown in 
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section. Other attributes (tx_capacity, rx_capacity, transMode) are supported after the 

extension illustrated in Figure 9
4
.  

 

Figure 9. The <<NetworkInterface>> also has a capacity attribute. 

The model can leave these attributes unset. In such a case, if the attributes of the 

abstract channel are settled, only they are considered, which enables a very synthetic 

network modelling. 

Moreover, in the more general case, the user can state the attributes of the abstract 

channel and of the network interfaces of the transmitter and receiver nodes, which 

enables a more accurate modelling.  

Specifically, if the capacity attributes are stated also in the network interfaces, then the 

more restrictive capacity attribute either at the network interface side, or at the abstract 

channel side applies. Following, some modeling cases illustrate the semantics: 

 The node-to-node connection is ideal (no <<AbstractChannel>> stereotype 

applied), and the network interfaces at the transmitter and receiver nodes have 

no settled attributes. This means an ideal point-to-point link between the nodes. 

 The node-to-node connection is ideal (no <<AbstractChannel>> stereotype 

applied), and the network interface of the transmitter node has a settled attribute, 

e.g. capacity=1000Mbps, while the network interface at the receiver side has no 

capacity attribute settled. Then, the capacity of the transmitter network interface 

                                                 

4
 Other extension possibilities have been assessed and finally discarded, which is documented in section 

6.2 of this report. 
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defines the maximum speed of the point-to-point node connection, i.e. 

1000Mbps. 

 The node-to-node connection has the <<AbstractChannel>> stereotype applied, 

with settled attributes, e.g. capacity=1Mbps, and the transmitter network 

interface has a settled attribute too, e.g. capacity=1000Mbps, while the receiver 

network interface has not capacity attribute settled. Then, the most restrictive 

capacity defines the maximum speed of the point-to-point node connection, 

1Mbps in this case. If, to the contrary, the transmitter network interface had 

capacity=256K, then 256Kbps would be the resulting point-to-point capacity. 

4.5.3 Description of the node as a SW/HW platform 

The methodology supports the modelling of the node as a SW/HW platform with access 

to, and that can be accessed from, the network. That is, as well as a set of HW resources 

(at least computational and network resources), the node also contains a set of SW 

platform resources, i.e. an RTOS and eventually the required drivers. 

The capture of the internal architecture of a node as a SW/HW platform follows the 

same rules as for the capture of a node as a HW platform, plus the inclusion of at least 

the following elements: 

 An operative system instance 

 The allocations of every operative system instance to at least one processing 

element of the HW architecture of the node 

Figure 10 provides an example of the internal architecture description of a structured 

node, specifically of the “server_node” instanced in the network architecture example 

show in Figure 4. 

 

Figure 10. Example of the description of the internal architecture of a resource node. 
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In the example, the “rtos” UML property is an instance of the “ubuntu14.04” 

component type. In turn, the “ubuntu14.04” component is declared in the software 

platform view, as shown in Figure 11. 

 

Figure 11. Declaration of an OS component in the SW platform view. 

4.5.4 Description of the node as a complete system 

A node can be a specific system with specific applications running on it and performing 

a specific functionality. Moreover, in the specific case of a distributed control system, it 

can perform sensing and/or actuations.  

Figure 12 shows an example of node described as a complete system. The methodology 

supports the description of any scale of system nodes, from big servers to small 

embedded systems. Thus, for instance, a complete system node can consist in growing 

the Figure 10 SW/HW platform by including component application instances and 

mapping them to the RTOS instance. Figure 12 shows the case of a small embedded 

system, specifically, the internal architecture of the temperature sensor “T_sens_str” 

node, employed to model the temperature sensor nodes instanced in the Figure 4 

network architecture. Figure 12 shows a node architecture where the “Tsens.exe” 

application (captured as an instance of a memory space in the modelling methodology) 

is mapped to the “rtos” instance, in turn mapped to an ARM7 based platform
5
. 

                                                 

5
 In the methodology there is not currently bare-metal application mapping. It is assumed that every 

application component will be mapped to an RTOS. Eventually, the model can be simplified to map a 

memory space instance (“an executable”) directly to a processor, but the methodology implicitly assumes 

that there is an RTOS instance (of a default type) in between.. 
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Figure 12. Internal structure of the “T_sens_str” node, example of embedded system as a node. 

Remind that, in terms of SW synthesis, the memory space “Tsense.exe” corresponds to 

a single executable. The mapping of the application component instance to the memory 

space is be done in the memory space view, as reflected in Figure 13. 

 

Figure 13. Allocation of a component application instance to a single memory space. 

Notice that, in contrast to the single-system modelling scenario, when modelling a 

network node (Figure 12) “Tsense.exe” is not a reference to an existing application 

component instance, but it is a new application component instance. It means that each 

instance of the “T_sens_str” node will involve an (internal) new instance of the 

application and of its related memory space.  

Equivalently, it is possible to capture the whole node architecture at once, at it is shown 

in Figure 14. 
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Figure 14. Allocation of a component application instance to a single memory space. 

Notice again that the description of the internal structure of the node contains no 

references to either application instances or memory space instances from the 

application and memory space views respectively, but its own application component 

and memory space instances instead.  

4.5.5 Hw Resources, SW Platform, Memory Space and Application views as 
Unified repositories for the Nodes´ Description 

The HW resources, SW platform, Memory Space and application component views 

declare all the components required for every node requiring the description of their 

internal architecture (sections 4.5.2, 4.5.3, 4.5.4). Let’s take for instance the declaration 

of HW resources. If two or more nodes declared in the node view are describing their 

internal architecture, the HW resource view has to declare all the HW resource 

component types employed in the description of each of those nodes. The same applies 

for the SW platform. 
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Figure 15. Example of the HW resources view. The set of declared HW components is the union of 

HW components instanced for each of the internal architectures captured for the three nodes 

declared in the node view shown in Figure 5. 

4.5.6 Description of a node through a Behavioural model 

A node can be described by associating a behavioural model which reflects the packet 

traffic generation/consumption pattern of the node. This enables an abstract modelling 

of complex traffic generation/consumption patterns, while it does not require to capture 

the details of the internal architecture of the node. 

The methodology comprises to mechanisms to model the node behaviour: 

 By associating a file 

 By associating an activity diagram 

The modelling procedure is the following. In a first step, a communicating task is 

declared as an application component in the application view. Such a component is 

stereotyped as <<Task>>, to refer that its functionality does not necessarily reflect an 

actual application functionality, but eventually a model of how a node will generate 

and/or consume packets. Then, either a file with the functionality or an activity diagram 

is associated to such a component. 
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Figure 16. Behavioural model of the traffic node generation declared as <<Task>> component in 

the application view. 

In order to associate the file, a <<file>> artifact is associated to the component. The 

“main” attribute of the artifact refers to the function which contains the code modelling 

the traffic generation/consumption. 

In order to associate an activity diagram, a conventional UML modelling procedure is 

followed, i.e. the <<Task>> component owns an UML activity (classified Behavior) 

with its corresponding activity diagram. Figure 17 shows an activity diagram capturing 

a possible model of the packet generation performed by the temperature sensor. This 

way, the temperature sensor can be modelled in a more abstract way than the way it was 

shown in section 4.5.4. Notice in Figure 16 task component declaration a symbol 

denoting the association of the activity diagram
6
. 

 

Figure 17. Example of activity diagram which captures the packet generation performed by the 

monolithic model of the temperature sensor node. 

After the <<Task>> component has been declared and a behavioral model, either via a 

file or via an activity diagram, has been associated, a second modelling step has to be 

performed. A “void node” component has to be declared in the node view, as illustrated 

in Figure 18, where the “T_sens_void” void node is declared. No internal architecture 

description is associated to such node component
7
.  

                                                 

6
In the application view, this symbol also appears for the <<system>> component, which has a composite 

diagram associated where the application architecture is described. 

7
 Notice that there is no symbol denoting that there is no association of any internal structure to the node. 
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Figure 18. Declaration of “void node” in the node view. 

Finally, as third modelling step has to be performed in the network view, consisting in 

the mapping via an <<allocate>> relationship of the task component instance to a 

“void” node instance. 

 

Figure 19. Mapping of a functional model of traffic generation to a “void” node. 

The afore described three step mechanism is quite flexible in the sense that it allows a 

single-source model for the exploration of different traffic source and sink models (see 

section 4.9.1.2).  

However, if such type of exploration is not required and the modeler is associating only 

a single type of behavioral model for traffic generation/consumption, then the modelling 

task can be greatly simplified into a more synthetic modelling mechanism. Such 

mechanism consists in directly associating the behavioral model to the node component 

(which is no longer a “void” one). 

In this synthetic modelling procedure, no declaration of a <<Task>> component is 

required in the application view. The modeler only needs to declare the node in the node 

view and associate to it either a UML operation or an activity diagram. 
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Figure 51 illustrates a case where a “Tsensor_node” node component is declared and the 

same activity diagram shown in Figure 17 is associated to it
8
. 

 

Figure 20. A component node in the node view which has been directly associated an activity 

diagram as behavioural model of traffic generation/consumption of the node. 

Figure 21 illustrates the case where the a “Tsensor_node” node component is declared 

and the functionality modelling. A <<File>> artifact is used to describe the source 

repository of the traffic model. 

 

Figure 21. Direct association of a function with the behavioural model of traffic 

generation/consumption of the node. 

Any tool navigating the model (for model transformation, code generation, etc) can 

recognize that the component node declared, in any of the two modelling styles, has 

associated a behaviour, which thus reflects a behavioural traffic packet 

generation/consumption model, and distinguish it from the cases where the internal 

architecture is described. 

 

4.5.7 Description of a node through attributes 

A node can be described through a set of attributes which define how the traffic is 

generated/consumed. This enables a more synthetic and abstract description than the 

                                                 

8
 Notice that now the node component is no longer “void”, and the symbol that denotes and associated 

internal description (an activity diagram in this case) appears. When the internal architecture of the node 

is described as shown in sections 4.5.2, 4.5.3 and 4.5.4, the same symbol appears in node component 

declarations, but then it denoted the association of the composite diagrams employed. 
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one shown in section 4.5.6, for a predefined set of traffic generation/consumption 

patterns.  

The modelling procedure consists in stereotyping the node component with the 

<<Node>> and the <<CommunicationEndPoint>> stereotypes. 

 

Figure 22. Declaration of two nodes which model traffic generation/consumption through 

attributes. 

The combination of the “packetSize” attribute (provided by 

<<CommunicationEndPoint>>) and the “commTxOvh” (provided by <<Node>>), 

enable the modeling of traffic source generators. The combination of the “packetSize” 

and the “commRcvOvh” attributes (provided by <<Node>>) enable the modeling of 

traffic sink nodes.  

Finally, these node components are instanced in the network view. No allocation of 

application or memory space instances to them is required (see Figure 23 and Figure 30) 

as an example. 

 

4.6 Multi-level network modelling 

The methodology supports multi-level network modelling. Specifically, it means that 

the network architecture enables the instantiation of nodes at different abstraction levels 

(see section 4.5.1).  

Figure 23 shows an example of a temperature and light control system in a building, 

where node instances corresponding to the three abstraction levels are instanced.  

Specifically, the light sensors and controllers are node instances (coloured in yellow) 

typed as node components specified through attributes, in order to model then as source 

and sink generators (see Figure 22). 

The temperature sensors are node instances (coloured in pink) typed as node 

components with an associated behaviour (specifically using an activity diagram). 

For the remaining nodes, i.e. cooler nodes (in blue), heating nodes (in orange), the four 

gateways and the control server (in white), the internal architecture of them is described. 

Figure 23 also reflects a case where all these nodes are complete systems, i.e. whose 
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internal description also includes the application. It reflects then a System-of-Systems 

as a product of the interconnection of networkable systems.  

 

Figure 23 Example of network architecture with muli-level node modelling. 

Moreover, the network model can also merge the different types of nodes explained in 

sections 4.5.2, 4.5.3, and 4.5.4. Figure 30 illustrates this fact. In such a model, the 

cooler and heater nodes are embedded systems which already integrate a specific 

application on top of the HW/SW platform. However, the server node is modelled as a 

networkable SW/HW platform (with no applications inside).  

4.7 Mapping of distributed applications onto the Network 

The methodology enables the description of the mapping of the components of a 

distributed application onto the network nodes. 

Figure 30 advances that possibility showing that three component instances (in green) 

of a distributed application are statically mapped to the server node. Similarly, other 

instances (in green too) are also mapped to the gateway node. This also advances and 

illustrates the flexibility and power of this modelling approach. They gateway nodes are 

already embedded systems, with an “internal” application instance which runs a specific 
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routing algorithm. However, the nodes can also work as SW/HW platforms where 

further application components can be mapped. 

In Figure 30, it has been captured in a very synthetic way. To understand its precise 

semantics, it is better to start first explaining how the methodology covers the mapping 

of a distributed application onto the network and the more explicit modelling 

mechanisms. Specifically, this section will cover mechanisms available to specify a 

single mapping.  

 

4.7.1 Distributed Application: A PIM mapped to the network 

The first thing to take into account in this methodology is that an application is always a 

platform independent model (PIM). What makes can make it a distributed application is 

that two or more component instances are mapped to at least two or more nodes of the 

network. 

In the application view the following elements are found: 

 One or more application component declaration 

 one or more top application <<system>> components. Each of them has an 

internal architecture, with instances of the aforementioned application 

components. 

As a general rule, the application component instances that need to be mapped to the 

network are only are found on such application view, within the architecture description 

of the <<system>> components. Each of those components reflect an application to be 

assessed or implemented. And each of those <<system>> applications support a broken 

down mapping, i.e. each internal application instance can be potentially mapped to any   

node of the network. 

The previous rule does not mean that there are application component instances in the 

application view. As was explained in section 4.5.4, the description of the internal 

architecture of nodes can include application component instances. Therefore, this 

application component instances are already mapped its containing node. This static 

map cannot be changed from the network architecture view. It requires the edition of the 

internal architecture description of the nodes. 

The methodology provides more flexible alternatives which enables to specify and 

change in a simple way in the network view the static mapping of component 

application instances, memory space instances and RTOS instances to the network 

nodes. 

Such an alternative is illustrated in the following sections by means of an example. In 

such an example, of two applications called “top_Tctrl_app” and “DisplayBuildData”, 

declared in the application view, is going to be mapped onto the network “network_ex”, 

shown in Figure 4. 
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The “DisplayBuildData” application is formed by a single component. The 

“top_Tctrl_app” has an internal architecture, and shown in Figure 24. It contains several 

instances of other application components, also declared in the application view. 

 

Figure 24. The architecture of the “top_Tctrl_app” application. 

4.7.2 Mapping Application Component Instances onto the network 

Continuing with the aforementioned example, the first step is to enable the reference to 

the application component instances present in the architecture of the “top_Tctrl_app” 

application in the description of the “network_ex” architecture. For it, in the network 

view, the “network_ex” component (declared in the network view) is declared as a 

specialization of the “top_Tctrl_app” application component (declared in the application 

view). 

 

Figure 25. Generalization of the “network_ex” component to enable references to “top_Tctr_app” 

application component instances. 

Then, in the architecture description of the network, that is, in the “network_ex” 

composite diagram”, the reference to the application component instances of the 

“top_Tctrl_app” are referenced and mapped to the network node instances. The 

mapping is done again via <<allocate>> relationships. This is exemplified in Figure 26 . 

There, “cfiltTdata”, “procTdata” and  
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Figure 26. Allocation of the “top_Tctrl_app” application onto the network nodes of “network_ex”. 

The same technique used to specify static mapping of component instances into intra-

node (SoC) resources is used, which helps to keep homogeneous the modelling 

techniques applied across MPSoC and network (SoS) levels. 

Using this technique the user can simply explore the impact of different mappings of the 

distributed application by changing the <<allocate>> associations. 

Notice also that in the example, not all the nodes have been targeted, specifically, the 

“Tsens1” and “Tsens2” nodes. It is not required since these nodes are already systems 

with its own application instance, as was shown in 4.5.4 (in charge of time stamping the 

temperature sample). 

At the same time, the allocation of “ctl1” and “ctl2” application component instances to 

the “gway1” and “gway2” nodes illustrates the possibility to map application 

components to nodes which, in turn, already have an application component instance 

inside. 
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Figure 27. Internal architecture of the gateway node. 

That the direct application component instance-to-node allocations shown in Figure 26, 

and the application component instance-to-RTOS instances shown in Figure 27 are 

synthetic modelling mechanisms. They are possible because they rely on a set of 

assumptions to enable the consideration of implicit memory space instances 

(executables) and RTOS instances (if required), and which enable their omission (and 

consequent modelling effort save). 

The following rules apply for the inference of implicit memory spaces: 

 Two component instances belonging to different application top components 

(<<system>> component) mapped to either an RTOS instance or a node, will 

involve two implicit memory spaces in between, one per system component. 

 A direct mapping of an application component instance to an RTOS instance 

involves an implicit memory space in between. In other words, they become the 

same executable. 

 If two or more application component instances belonging to the same 

application top component (<<system>> component) are directly mapped to an 

RTOS instance, it involves an implicit shared memory space in between. 

  Two component instances belonging to the same application top component 

(<<system>> component) but directly mapped to different RTOS instances or 

nodes involve different implicit shared memory spaces in between. 

The following rules apply for the inference of implicit RTOS instances: 
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 Any direct mapping of two or more explicit or implicit a memory spaces to the 

same processing element involves an intermediate implicit single-processor 

RTOS. 

 Any direct mapping of either a explicit or implicit memory space to a node 

integrating a cluster of symmetric processing elements involves an intermediate 

implicit SMP-RTOS. 

 Any direct mapping of a single memory space, either explicit or implicit, to a 

single processing element of CPU type involves an intermediate implicit RTOS
9
. 

 Any direct mapping of a single memory space, either explicit or implicit, to a 

custom processing element (FPU, etc) involves no RTOS instance. 

The inference rules rely on assumptions on the mapping preferences minding 

performance. For instance, it is assumed that when two application component instance 

belonging to the same top application component are mapped to the same RTOS 

instance, then it is preferred to put them in the same memory space because it involves 

lighter and faster communications among them.  

The inference rules also follow methodological criteria. The <<system>> components 

are distinguished from non-system components in the stronger requirement of involving 

at least a separated memory space.  

As a result, the Figure 26 diagrams is equivalent to the diagram of 

Figure 28, and the Figure 27 diagram is equivalent to the Figure 29 diagram. 

                                                 

9
 Modelling of bare-metal applications are not supported so far. 
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Figure 28. Figure 26 mapping making explicit memory spaces. 

 

Figure 29. Figure 27 mapping making explicit memory spaces. 

Finally, Figure 30 illustrates a case where the network model merges instances of nodes 

at different abstraction levels, and the mapping of distributed application.  
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Figure 30. Example of fixed allocation of a distributed application onto a set of processing nodes of 

a network. 

4.7.3 Mapping with explicit Memory Spaces 

As was shown in the previous section, the inference rules rely on a set of criteria which 

enable a synthetic mechanism to specify the mapping of the distributed application onto 

the network, which enables the omission of memory spaces in the model, and 

specifically, in the network architecture model. 

The production of models where the memory spaces are explicit, is not only supported, 

but it is necessary if the modeller wants to break the criteria of the aforementioned 

memory space inference rules. For instance, the modeller might want to map every 

single application component instance on its own memory space (as it is shown in 

Figure 31). In such an example, the “cfilTdata”, “procTdata” and “genActuation” 

application component instances, which belong to the “top_Tctrl_app” are mapped to 

the same node (the server node), but each with its own memory space (so producing its 

own executable in synthesis). This also enables to explore the effect of different 

memory space allocations and mappings (see section 4.9.1). 
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Figure 31. Mapping of the distributed application allocating specifically a memory space to each 

application component instance. 

4.7.4 Distributed RTOS: Mapping RTOS instances onto the network 

In a similar way, the methodology enables the capture of distributed RTOS. They are 

captured using the same technique, i.e. by means of <<allocate>> UML abstractions 

from the RTOS instances to the nodes. The methodology assumes that such a mapping 

can be done to: 

 Any node which describes only a set of HW platform resources 

 Any node with an internal architecture description (sections 4.5.2, 4.5.3, 4.5.4) 

with computational resources (CPUs) not allocated. 

In both cases the default semantics is that the RTOS maps to all the available 

computational resources (assuming that the distributed RTOS is SMP, then the target 

must be also SMP). 

The description of the gateway platform, shown in Figure 32, shows an example of 

node as a HW platform. 
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Figure 32. Description of the “gateway” node, example of node as a HW platform. 

 

Figure 33. Example of distributed RTOS instance (“DRTOS”) mapped to two nodes (“gway1” and 

“gway2”), modelled as two networked HW platforms. 

From the aforementioned default semantics, the distributed RTOS takes over the two 

processors of each gateway node. 

 

4.8 Modelling of Zones and Contiguity 

The modelling methodology enables the modelling of zones in a wide sense. The 

modelling approach which will be described relies on a minor extension of the domain 

view and profile shown in section 3.1, and shown in Figure 34. 
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Figure 34. Zone inherits from the MARTE <<HwComponent<< stereotype (as well as being 

applicable to Packages, it makes Zone applicable to component and properties, among other 

classifiers), and Contiguity is applicable to connectors, as well as to associations. 

A first modelling scenario supported is the definition of zones as areas where 

transmission characteristics are homogeneous, in the sense the transmission 

characteristics between two nodes in the same zone are the ones involved by the 

network architecture captured and explained in the previous sections. It obligues to 

consider the traversed path, the attributes of abstract channels in the path, and the 

traversed nodes. 

Additionally, the contiguity modelling concept enables to consider the change or 

penalty in the transmission conditions when the communication between nodes has 

traverse zones
10

. 

 

Figure 35. Example of description of zones with their contiguities. 

Since <<Zone>> inherits from <<HwComponent>> (an excerpt of its definition in 

MARTE is shown in Figure 36), the “dimension”, “area” and “position” attributes for 

an abstract geometric characterization of Zone are available. 

                                                 

10
 The basic semantics of this concepts, zones, contiguity and resistances are the same as in [1][7][8]. The 

change is in the modelling style which provides more flexibility and enables single-source DSE model, on 

the possibility to describe environment conditions, relying on MARTE HW_Component, and on the 

possibility to handle different zone types. 
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Figure 36. Excerpt of the MARTE profile where HW component is defined. 

Moreover, the <<HW_component>> stereotype, and thus the <<Zone>> stereotype 

enable the association of environment conditions. In MARTE, they serve, in the context 

of <<HW_Component>>, to state the environment conditions required by the HW 

component. 

The <<Zone>> extension in CONTREX extends the semantics to mean the environment 

conditions imposed by the zone. 

 

Figure 37. Stating humidity conditions associated to the “parking” zone captured the “trans_zone” 

zone diagram shown in Figure 35. 

Moreover, the methodology supports several zone layouts. 

That is, with the previous modelling elements, one would be obliged to specify the same 

zone breakdown, common for every aspect affecting the nodes (propagation conditions, 

temperature, humidity, etc). This can be understood as a single zone layout. 

By supporting several zone layouts, each layout (or zone layer) would be defined by the 

“type” attribute of the zone. In the Figure 37, all the zones are of “type=humidity”. 

Let´s pose now that we want to consider the temperature conditions. In some cases, it 

may happen that the zones defining humidity conditions also match a layout of 

temperature zones. However, in many other case it might not happen. For instance, let´s 

assume that the parking temperature sensors have a specific temperature regulation to 

ensure they work over 0ºC and below 30ºC. 

Then, as it is sketched in Figure 38, specific temperature zones (in this case one for 

outdoors, and another for “inside_Lsensor_cover”) can be defined. Then the light 

sensors are allocated to this temperature zones. However, in terms of “humidity” 
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environment conditions, the sensors are allocated to the “parking”, “lobby”, 

“tech_offices” and “mark_off” zones. 

Notice that for the sake of simplicity in the model “humidity” zones not reached by a 

light sensor also allocated to a “temperature zone” can define also a temperature 

condition. That is, such in such a zone there can be a match of humidity and temperature 

conditions. However, if a zone like for instance “parking” cannot define temperature 

conditions. The contrary involves that light sensor node “Lsens1” is assigned to two 

zones which potentially assign incoherent temperature conditions. 

 

Figure 38. Different zone types are can be specified. 

 

4.9 Single-source Network Modelling for Automated DSE 

The presented network modelling methodology enables the exploration of several 

aspects related to the network with potential impact on the performance of either 

specific nodes or the whole system of systems. Specifically, it is not only possible to 

explore aspects which regard to the network architecture, but also aspects which refer to 

the networking capabilities of the nodes. 

Sufficient modelling elements have been already provided to let the user edit the model 

for such an exploration. For instance, the capacity attributes of the network interface 

elements and/or of the abstract channels can be changed. The fixed allocations of 

application component instances or RTOS instances to nodes can be also changed. It is 

also possible to change the location of nodes by changing their allocation to zones (see 

section 4.8). 

This elements provide capability for an interactive user-driven exploration. However, 

since it requires the edition of the model, it prevents an agile automated design space 

exploration (DSE). As was introduced in [3], the possibility of the description of the 

design space, i.e. the potential set of solutions to be explored, is required. It allows for a 

single-source model for DSE. It is key to avoid the time consuming editions of editing 

the model and regenerating the performance analysis (typically an executable) model. 

This methodology enables the production of a single-source model which enables DSE 

of different aspects of the network model. Specifically, of: 
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 The attributes of the network 

 The mapping of distributed application components and RTOS to nodes 

 The attributes of the nodes and of their network interface capabilities. 

4.9.1 Space of network attributes 

It is possible to describe a design space for the exploration of different network 

configurations by associating sets of values to any of the attributes which describe the 

network. 

4.9.1.1 Exploring the effect of attributes of abstract channels 

It is possible to capture a single-source model for the exploration of the impact of 

different values on the attributes characterizing abstract channels. 

Figure 39 shows a case where, over the network specification employed in previous 

examples, a design space of three possible values of error rates for the abstract channel 

connecting “Tsens2” sensor and the gateway “gway2” are illustrated. 

 

Figure 39. Specification of a design space in terms of the error rate which can be associated to one 

abstract channel of the network. 

While the other abstract channels are configured with a fixed error rate, the abstract 

channel connecting “Tsens2” and “gway2” has an “errorRate” attribute with a value 

given by the user-defined VSL parameter “error_rate_var_1”. The conector is linked to 

an <<ExpressionContext>> UML constraint, where the VSL expression to define the 

exploration space of that variable is expressed, as stated in the CONTREX modelling 

methodology. 

It is also possible to apply the same procedure for specifying an exploration in other 

attribute, e.g. the abstract channel capacity, or on other abstract channel. In the later 
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case, the default semantics to define the resulting design space is the cross-product. For 

instance, in the example of Figure 40, it turn outs into 6 combinations. 

 

Figure 40. The exploration space grows with the cross-product of the attributes exploration space. 

4.9.1.2 Exploring the effect of traffic source/sink models 

The methodology supports single-source modelling for the exploration of the effect f 

different traffic source or sink nodes. The modelling technique is similar to the one 

shown in previous section. 

 

Figure 41. Stating two different traffic source distributions in a single model. 

Figure 41 illustrates the case of a node which models a light sensor node through 

attributes (section 4.5.7) is declared. Whole the packet size attribute is fixed, the value 

of the communication overhead is annotated with a VSL variable (“commTxOvh_var”). 

Moreover, the node component is annotated with a <<ExpressionContext>> comment 

which states the values which the variable can adopt in the exploration, i.e. exp(50.0) 

ms and normal(60.0,10.0) ms. This way, in the former case the node behaves as a 

generator of 1024 bits packet every 50.0ms on average, with an exponential distribution 

function. And in the latter case, the node behaves as a generator of 1024 bits packets 

every 60.0ms on average and 10.0ms of standard deviation, with a Gaussian distribution 

function. 

In the Figure 41, the comment is associated to the component node declaration. Again, 

if the exploration of the node attributes is to be applied to a specific instances or set of 

instances, it is sufficient to associate the comment to the node instance in the network 

view. 
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4.9.1.3 Exploring the effect of attributes on nodes whose internal architecture has 
been described in detail 

The same techniques applied for single-source modelling for DSE explained for single-

system modelling apply. They include exploring attributes of components, and of 

mappings at the different levels of the model. 

4.9.2 Space of network mappings 

4.9.2.1 Exploring direct mappings from the application into the network 

The methodology enables a single-source model for DSE of then of mappings of the 

distributed application onto the network architecture. 

For it, the <<assign>> stereotype is used. Figure 42 shows an example of description of 

a set of mappings from a set of application components instances (“cfiltdata”, 

“procTdata” and “genActuation”) directly onto a set of network nodes (“gway1”, 

“gway2”, “server”). It is a variation of the Figure 26, which keeps the mapping of “ctl1” 

and “ctrl2” application component instances fixed, while it states, through the 

<<assign>> stereotype that the application component instances can be mapped either 

to the “net_node1” node, to the “net_node2” node or to the “server” node. Since in this 

case, memory spaces are omitted (for the purposes of the example let´s suppose that the  

gateways are complete systems), the inference rules introduced in section 4.7.2 apply. 

The semantics of the <<assign>> is that it defines all the variations of the n-th “to” 

elements (nodes) taken in m-th elements of “from” (component application instances in 

this case). The result is in this case m
n
 (3

3
=27) variations. 

Notice in the example that the <<assign>> comment element can be in the model with 

the <<allocate>> fixed associations. When the model is used for exploration, the 

<<assign>> overrides the fixed mapping, while the fixed allocation server as default 

mapping, which can be used to produce a fixed performance model or for synthesis. 
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Figure 42. Example of capture of a set of mappings of the “Top_Tctr_app” application on the 

“network_ex” architecture. 

As has been shown, the application to network mapping enables to keep a homogeneous 

description style
11

. 

Similarly as in the single system description case, constraints to reduce the exploration 

space can be applied, for instance to eliminate exploration of symmetric solutions. 

4.9.2.2 Exploring Mappings at different levels 

A single-source model for the DSE of memory spaces handling. In the example of 

Figure 43, the modelling of design space specification for two types of mappings is 

shown. 

Figure 43 shows the specification of a design space considering the possible mapping of 

three component application instances (“cfilTdata”,“procTdata”, and  “genActuation”) 

into three different memory spaces (“ms3.x”, “ms4.x”, and “ms5.x”) is modelled. This 

enables, for instance, a single-source exploration of the impact of mapping to different 

memory spaces, and study if the different communication overhead is assumable if the 

user is interested in separating the components into different executables. 

 

                                                 

11
 This is an adaptation of the modeling technique used to specify mappings of 

component applications to platform resources at an intra-node level. The main change is 

that the destination of the <<allocate>> association is a node instance (not a processing 

resource of the node). 
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Figure 43. Example of exploration of mappings of component applications to memory spaces and 

memory spaces to nodes. 

Figure 43 also illustrates the specification of a space of mappings of a memory spaces to 

nodes. Specifically, the model states that the “ms1.x” memory space can be mapped, so 

executed either on node “gway2” or on node “server”. Similarly, the model states that 

the the “ms2.x” memory space can be mapped either on node “gway1” or in node 

“server”. 

Therefore, Figure 43 defines up to 2·2·27 = 108 mapping configurations
12

. 

4.9.2.3 Mapping of distributed RTOS to nodes 

In general it should be sufficient to specify which nodes work under the management of 

a distributed RTOS. 

However, the use of the <<assign>> will help to explore the allocation of component 

instances or memory spaces to different distributed RTOS instances or to an RTOS 

instance or a node. 

4.9.3 Space of Node Interface Capacities 

As was mentioned in section 4.5.2, the type of network interface device available and 

used by a node to connect to the network may have a relevant impact on the 

performance of both the node, and the overall system-of-systems. 

For instance, it is possible to have an over-dimensioned amount of network resources, 

of servers providing a high computing capability, and of sensor nodes work at suitable 

speed. However, if those sensor nodes have, for example, a too slow network interface 

to transfer the sensed data, then overall performance of the control distributed system ca 

be unsatisfactory.  

Because of that it is important to enable the exploration of the impact of network 

interface capabilities.  

4.9.3.1 Exploring the attribute values of a generic network interface 

The first approach available in the methodology is to declare the attribute value as a 

variable in the network interface component declaration in the hardware resources view 

(see an example in Figure 44).  

                                                 

12
 In this example is seen again the interest of constraints on mapping to eliminate symettries. For 

instance, in the example, a mapping of the three application component to either “ms3.x”, “ms4.x” or 

“ms5.x” can be considered equivalent. 
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Figure 44. The transmission capacity of the “MyNetworkIf” network interface is declared as a 

variable. The design space is growth by stating through a constraint associated to the network 

interface component that three values for the transmission capacity will be explored. 

This way, the design space can be described, as explained in D2.2.1 [1], by means of a 

VSL expression in a UML constraint with the <<ExpressionContext>> stereotype 

applied and associated to the component. For instance, the Figure 44 example, states a 

design space where the effect of using network interfaces with either 100Mbps, 

450Mbps, or 1000Mbps can be explored. 

Figure 44 example refers to an exploration on the value of an attribute of the 

component, as it is declared in the hardware resources view. This means that the value 

stated for the attribute applies for all the network interface instances. 

The methodology also enables to state the exploration at instance level. For it, the 

constraint describing the exploration space is applied to the instance, within the internal 

architecture description of the node (composite diagram of the node within the node 

view), as it is shown in Figure 45.  

 

Figure 45. Declaring the space of values for the transmission capacity of a specific instance “netif1” 

of a network interface component. 

4.9.3.2 Exploring the utilization of different types of network interfaces 

A common exploration scenario which is also supported by the methodology is when 

the user wants to explore the utilization of different types of network interfaces. Each 

interface has associated a specific set of values for the network interface attributes. 
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The modelling technique employed relies on the definition of as many refinements of a 

generic network interface within the hardware resource view, as specific network 

interface elements one want to explore. This is illustrated in Figure 46
13

. 

 

Figure 46 The network interface types to be explored are declared as refinements of a generic 

network interface. 

The refinements are again components with the <<NetworkInterface>> stereotype. Each 

component states the specific set of values associated to such network interface. They 

are defined as refinements of the generic network interface component (named 

“GenNetworkIf” in Figure 46 example) by means of UML substitution associations 

with <<refine>> stereotype. 

In addition, the <<allocate>> stereotype can be used for one of those refinement 

associations. It will serve to state the default type to be employed (if not exploration is 

performed with the model), and for software synthesis purposes. 

When the model is employed for exploration purposes, by default all the refinements 

will be considered. In Figure 46 example, the four alternatives, namely 802.3ab, 

802.11ab, USB-2.0 and USB-3.0 would be explored. 

Additionally, the user can constrain the space of network interface types by means of a 

<<ExpressionContext>> constraint. It is illustrated in Figure 47, where it is specified to 

explore only the wired interfaces (802.3ab, USB-2.0 and USB-3.0). 

                                                 

13
 An immediate approach could be just to change the type of the network interface instance. However, it 

requires to change the model and prevents the single-source approach. 
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Figure 47. Constraining the space of network interface types to be explored in the hardware 

resources view. 

The constraint of Figure 47 reflects the case where the design space is constrained at 

component declaration time (in the hardware resource view).  It is also possible to 

constraint the space of network interface type exploration at instance level. It is 

illustrated in Figure 48. 

 

Figure 48. Constraining the space of network interface types to be explored at instance level. 

 

4.9.4 Space of Node Distributions and Zone conditions 

The modelling methodology supports the specification of different node distributions 

and node conditions in the model for DSE. 

By reusing the modelling mechanisms explained in the previous sections, different 

allocation of nodes to zones can be described in a single model. Consider the example 

of Figure 49. In such an example, an <<assign>> comment is employed to specify that 

the “server” node can be located either in the “tech_offices” zone or in the “mark_off” 

zone. 
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Figure 49. Example defining the placements of the server node in two zones. 

Another aspect supporting single-source modelling for DSE is the specification of 

different node conditions. 

 

Figure 50. In general, the specification of the environment conditions is a range. 

Since the specification of the environment conditions “r_Conditions” attribute, involves 

the specification of a range, this can be already interpreted at DSE time, as the range of 

values to stimulate the performance model during the exploration. Additionally, an 

<<ExpressionContext>> comment can be used to express a different range. 



 

 

56 

 

 

4.10 Modelling of control distributed systems and cyber-
physical systems 

The CONTREX modelling methodology enables the modelling of a single system or of 

a networked system-of-systems. Specifically, the focus is the modelling of mixed-

criticality embedded systems and mixed-criticality distributed systems for control. 

These systems or systems-of-systems typically sample an act on a physical 

environment. This environment can be modelled as a set of differential equations or 

similar approaches (Z-transform, state-equations, non-linear elements, etc). The 

connection of this type of environment models with the system or system-of-systems 

modelled in CONTREX build up a cyber-physical system (CPS) or system-of-systems 

(CPSoS) model. 

The link between the embedded system or the embedded distributed system with the 

physical environment is two fold. There is a logical connection in the logicap ports of 

the application components. These ports are associated to the instances of 

<<HwSensor>> and <<HwActuator>> controllers, which can be either in the 

architectural view of the <<system>> component, but also in the node architecture 

description
14

.  

 

 

 

                                                 

14
 Here, the frequency parameter could be used, but a better approach is to add a capacity attribute to the 

HWSensor and HWActuator. 
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5 Notes on the Compatibility with 
Edalab&U.Verona methodology 

The shown methodology relies on a slightly extended metamodel which therefore 

facilitates compatibility with Edalab&U.Verona. 

Following, some additional clarifications are provided. 

5.1 Declaration of nodes 

In the node view, abstract nodes could also have the <<Task>> stereotype for 

compatibility purposes- This way, it would be explicitly stated that the node has 

associated an abstract model (either through a behavior or a set of attributes) of traffic 

source/generation. It will also enable node links through dataflows (see next section). 

   

Figure 51. Direct association of a behavioural model of traffic generation/consumption to the node. 

5.2 Modelling of dataflows among abstract nodes 

In section 4.5.7, the modelling of dataflows to complement the modeling of traffic 

source and sink generators is supported by means of communication diagrams. 

To rely on <<Dataflow>> stereotype is possible for compatibility purposes. As shown 

in the previous section, the task stereotype can be applied to the node component. The 

<<dataflow>> can stereotype the messages in the communication diagram shown in 

section 9.1. 

An additional modelling style is to use properties stereotyped with <<Dataflow>>, used 

to link node instances. They have to be captured in the network composite diagrams as 

instances (i.e. UML properties) with the <<Dataflow>> stereotype applied. Such 

dataflow instances can then link all the task stereotyped nodes (or instances of task 

stereotyped components). 
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6 Implementation Notes 

 

A number of implementation issues have been identified. These issues condition the 

UML/MARTE and model-to-text toolchain version selected, and the modelling 

technique and profile solution. 

 

6.1 Redefinition of CONTREX profile prevented when referring 
MARTE NFP sub-profile elements 

The MARTE profile source is not available and the extension is being performed 

through an additional profile. 

However, in the later MARTE release (v1.0.1) the profile cannot be defined when an 

element of the profile inherits an element of the MARTE NFP sub-profile. The 

definition is required to edit and complete the profile, and to later be applied and used in 

the models. 

 

The following solutions were tried without success: 

 Eclipse Luna and older versions (June included) and their related Papyrus 

versions 

 The installation of an older version of Papyrus on Eclipse Luna 

  

The following know solution was verified: 

 Using a Eclipse Indigo and its related Papyrus 0.8.2 

 

The main problem is that this is a relatively old environment. It is worrying that no 

actual solution was provided for this issue (already reported several months ago) and 

that a new stable release of Eclipse and Papyrus will come in 2015 June.  
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6.2 Extension of network interfaces 

The option which has been assessed first for extending <<NetworkInterface>> has been 

to make that it inherits <<CommunicationMedia>>, which already has the capacity 

attribute. It is illustrated in Figure 52. 

 

 

Figure 52 . Tried extension of NetworkInterface for enabling capacity attribute. 

 

However, this extension involves a failure at modelling time in Papyrus 0.8.2. (version 

associated to Indigo) when entering the stereotype in order to apply values. Then error 

appearing is reproduced in Figure 53. 

 

 

Figure 53. Failure when the extension  shown in Figure 52 is tried. 

 

So far, it is to be assessed if this error is a tool related problem or if it correspond to a 

deeper conceptual problem. 
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A workaround for this issue consists in enforcing the user to stereotype the network 

interface component also with <<CommunicationMedia>>. However, this option has 

been discarded for being less compact and so leading to a heavier modelling procedure. 

Therefore, the extension and modelling approach shown in section 4.5.2 has been 

adopted. 
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8 APPENDIX A: Summary of Meta-Modelling 
elements in the background modelling 
methodologies 

8.1 Metamodel from Edalab&U.Verona background 

 

The UML/MARTE methodology developed by Edalab and U.Verona enables the 

 representation of the: 

 

 Network structure. Such network structure consists on the allocation of network 

nodes and their interconnection via abstract channels. It also includes the 

clustering of the network elements into zones, and the capture of contiguities 

among zones. 

 

 Representation of task activities. 

 

 Capture of the allocation of task activities into nodes. 

 

 The attributes of the aforementioned elements. It requires the support of the 

following concepts: 

 

 

Level Modelling 

Element 

Meaning 

Application 

 

Task Basic functionality of the whole application, which reads 

some input data and produces some output data 

Dataflow Communication between two tasks 

Network/HW 

resources 

Node Container of tasks with computational resources 

AbstractChannel Generalization of network channels 
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Network 

(environment 

information) 

Zone Node containers. A zone stablish a cluster of nodes which 

are always capable to communicate among themselves. 

 Contiguity Relation between two zones. It is used to reflect the 

environment conditions eventually effecting on the 

propagation properties among zones. 

 

 

 

In turn, each modelling elements requires its own set of attributes: 

 

Modelling 

Element 

Attributes Type Meaning 

Task c ComputationAttr Computation Resources Required 

 m Boolean Mobility of the task 

 type TaskType Type of task modelling 

Dataflow ts Task Source task 

 td Task Destination task 

 requiredQoS QoS Required QoS 

Node t Set(Task) Set of tasks associated to the node 

 c ComputationAttr Computation Resources provided 

 k NFP_Price Economic cost of the node 

 m Boolean Mobility of the node 

 p Power? Power budget of the node 

 gamma Integer[1]? Vector of coefficients associated to the 

tasks assigned, to calculate their 

contribution to resource (cpu 

utilization and memory) and power 

requirements. 

AbstractChannel n Set(Node) Connected network nodes 

 defaultQoS QoS Communication attributes and Tx 
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power 

 d LenghtUnitKind Length of  a wire/ maximum range of a 

wireless link 

 k NFP_Price Economic cost 

 w Boolean True means is a wireless channel (if at 

least a node bound is mobile, it is 

assumed that w should be true. 

Zone n Set(Node) Set of nodes in the zone 

 s Length?? Spatial feature of the zone (surface) 

 e  Environment conditions [8] 

Contiguity z1 Zone First zone 

 z2 Zone Second zone 

 Resistance R Resistance between zones. 

 

In turn, those attributes require the following data type definitions not present either in 

UML (as primitive types) or in MARTE. 

 

Enumerated data types: 

 

Data Type Value Meaning 

Task Type  Was in which the task is modelled 

 CBR Continuous bit rate 

 ON_OFF_CBR Tasks switchs between sending packets on a CBR 

mode and non-sending at all (duty cycle, period?)  

 Sink Task consumes instantaneously the packet 

 VBR Variable bit rate (how modelled?) 

 User Task Traffic generation modelled through an activity 

diagram 

 

Aggregated data types: 
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Data Type Attribute Type Meaning 

ComputationAttr   Computation attributes which 

reflect either required by a task or 

provided by a node 

 mem_size Integer Requirement of memory size 

(computation resource) of the 

task  

 cpu Integer Requirement on utilization of the 

cpu (computation resource) of the 

task 

CommunicationA

ttr 
  Communication attributes which 

reflect either required by a task or 

provided by a node 

 Throughput NFP_Frequency throughput 

 Delay NFP_Duration End-to-end delay 

 Error rate NFP_Frequency (packet/bit) error rate 

R   Resistance between two 

contiguous zones 

 distance Real?  

 Throughput_redu

ction_factor 

NFP_Frequency  

 Added_delay NFP_Duration  

 Added_error_rate NFP_Frequency  

 Power_reduction_

factor 

Power  

QoS   Quality of Service. It can be 

required or provided depending 

on the attribute context. 

 c CommunicationAttr Resulting Communication 

Attributes  

 Pt Power Transmission Power 

 

Note that the aggregated attributes present in this table do not need to appear in a profile 

implementation as separated data types. For instance, while in the profile shown in [1] 
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appeared as separated elements, in the profile shown in [7], computation and 

communication attributes appear directly deployed in the task and node modelling 

elements, and in the dataflow and abstract channel modelling elements respectively.  

 

Note also that, as can be expected, QoS in a network rely much on the values of the 

communication attributes which can be obtained as the result of the analysis. 

 

Similarly, R type could rely on the QoS type, all attributes except for distance refer to a 

representation or QoS reduction. 

 

8.2 Meta-model from UC background 

 

A component-based methodology which supports separation of concerns supporting 

views for the detailed description of the node internals (application, SW architecture, 

HW architecture, etc) and views for the description of the network with nodes and the 

network. 

 

Morever, the following modelling elements are required: 
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Level Modelling 

Element 

Meaning 

Application / SW  

/ HW 

 

Data types, interfaces, 

RtUnits, HW 

components, … 

A detailed description of the internal architecture and 

attributes of the MPSoC. It includes the architecture of the 

application, software and hardware components, and 

specification of allocations at multiple levels  

HW Architecture HWbattery  

Hwsensor Reflects the IO controller of the HW architecture in 

charge of sensing a specific physical parameter of the 

environment 

Network interface Reflects the network interface element in charge of  

connecting the MPSoC node resources with the network 

infrastructure 

Network Node Node 

 Node-to-Node link Description of the wireless connection of the  

 

In addition, the following attributes are required for the modelling elements: 

 

Modelling 

Element 

Attribute Type Meaning 

Network 

Interface and 

Node-to-Node 

link 

  Computation attributes which 

reflect either required by a task or 

provided by a node 

 trans_power NFP_Power Transmission power used to 

transmit a packet 

 retries Integer Number of retrials required for 

transmission 

 encripted Boolean Specifies if packets are encrypted 

for transmission 

Node-to-Node prob Real Communication success 
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link probability 
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9 APPENDIX B: Features under discussion 

This appendix includes additional features that are or have been under discussion, but 

not introduced in the methodology. 

 

9.1 Modelling of Routing Paths 

The functionality of application components states the precise destination address of the 

packages. However, abstract node models shown in sections 4.5.6 and 4.5.7 state 

nothing to that regard. Default semantics of random addressing of the packets and 

routing in the nodes is assumed. 

If a modelling scenario requires the modelling of a specific addressing of packets, and 

of fixed routing paths, in a model with abstract nodes, then the model shall include 

additional information capturing such addressing and fixed rooting. 

A possible solution is to use a communication diagram to capture such an information. 

It is illustrated in Figure 54. 

 

Figure 54. A communication diagram can be used to specify the traffic flow between source and 

sink nodes. 

Figure 54 diagram enables the definition of destination addresses. However, some 

performance models can still require a more precise modelling of the path traversed by 

packets within the network. The methodology enables a further degree of precision by 

stating complete and fixed routing paths between source and sink nodes. It requires 

referring all the instances reflected in the network architecture which are involved in the 

specified routing paths. Figure 55 provides an example based on Figure 30 network 

example. 
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Figure 55. Precise definition of the routing paths followed by the packet traffic modelled though 

abstract models of nodes and sources. 

 


