UML/MARTE
Methodology for
Heterogeneous System
design

May, 2016

Microelectronics Engineering Group
TEISA Dpt., University of Cantabria
Authors: P. Peiil

Revisions : F. Herrera

Author Date Description
FeHe 26/05/2015 Polishing of the Architectural View section
FeHe 28/05/2015 Polishing on the Application Vie_W section including
some restructuring
FeHe 25/06/2015 Polishing of section 5.3
FeHe 15/05/2016 Polishing of section 5.1

Index:

1 MODEL VIEW SPECIFICATION ... 11
PIM VIEWS ... et ea e 12
2 DATAVIEW ... 12
21 ENUMEration DAta LYcovouiiiiiieieiite ettt 12
2.2 Primitive Data tYPE......cviviiieiiitiiieiete ettt r ettt 12
2.3 DErIVEd DAt LYPE ..otttk et b et 13
2.3.1 SEIUCTUNE Data TYPE weeeeieiiiie ittt sttt ettt seaeennn e nnneenene s 13
2.3.2 Y g =NV D 1= IR V7o LT RS 13
24 SPECITYING AALA TYPES ...cvviiveictiete ettt te e e e e sreesreenre s 14
25 Generalization Of DataTYPEScccviiiiiecieceere et re e ee e 16
251 Data Type Generalization for Concurrency EXploration.......ccccceeiiieeeiniieesviieeesinieennn 16
3 FUNCTIONAL VIEW. ... e 18
3.1 LS ettt R e teereen e et e nre et nne s 18
3.2 File SPECITICALIONoeeiiii et esreens 19
3.3 FNEEITACES ...t bbb bbb aena e 19
3.3.1 INTEITACE SEIVICES triiitiiiiiiieiiit it siie ettt st srb e e s be e sabe e s rbeesnbeesrbeesnbee e 20
332 INtErface INNEITANCE uiiiii ettt st e sbe e 21
34 [T o U TSR 23
35 AUXITTANY FIIES ..o bbb 23
4 COMMUNICATION VIEW. ...t 25
4.1 Channel type SPeCIfiCAtIONceiviiiicicce e 25
411 Storing Communication MeChaniSmMcocuieeiiiiei e 25
4.1.2 Communication semantics associated with a client application........ccccceeveeviiveennee. 25
4.2 Synchronization MechaniSmSccciiiiiiiii e 27
43] =10 ANV U T: Lo] PSP 28
5 APPLICATION VIEW. ... 29
5.1 ACEIVE COMPONENTS......oueiiiitiiteitieieee ettt ettt ee bbbt e et et e e sbe b e 30
5.1.1 Application Component AttrDULES ...cccuviii i 30
5.1.2 Main function of the Application COMPONENTcciuiiieiiiii e 31

5.1.3 Association of Files with Application COmMpPONENLScccvvviiieriieiiieiiee e 31

5.1.4 Association of File Folders with COmMPONeNntsc..veeviive e 32
5.1.5 The main application COMPONENTuiii i e e re e enes 32
5.1.6 oo T (PP P P U PP UPRUPPUPRTPI 33
5.1.7 (60 ol 0 =To1 o] £ T TSP RPPPTR 33
52 PaSiVe COMPONENTS.......c.oitiieiiitiiieiete ettt ettt sb ettt sb et besr e ebesne e 35
53 COMPOSITE COMPONENTS ..ottt b et b et b b s 35
54 APPLICAtioN AFCHITECTUNE.c.iiiiiice e 36
54.1 System ports: 1/O COMMUNICATION .iviiuieieieie ittt 37
5.4.2 Periodic Application INSTANCES ...uuveiiiiee e it e st et e e e e naeee s 37
543 SYSTEIM FIlES 1 utiie i ittie ettt s e e e e e e e st e e st e e e e ast e e e e snneeeesnaeeeenneeeeennnees 38
55 (] o] = U 1< TSPV PR O PP PP P P 38
5.6 FHIES FOIRIS .. bbbt nbesne s 39
5.7 MOdElliNG VAITADIESccveeiieice e 39
5.8 Modeling Variable SpecifiCation ... 40
58.1 SYSTEM COMPONENTS ettt ittt 41
5.8.2 I oo { U =L I TP TP PP U PP PP UPPRUPPRUPI 42
5.8.3 (2= o PRSPPI 42
5.9 Association of source code to application COMPONENTSc.cccevveveeieniesiee e 42
5.10 Concatenation of PatRS...........ccoiiiiiiie 42
6 MEMORY SPACE VIEW ... 44
6.1 Process MOAEITINGoveiiiiiiii ettt 44
6.2 PrOCESS STFUCTUIE........eitiiiieiee ettt ettt ettt et te e e neesreesaeesaeenaeenbeeneesreenreens 44
6.3 Application AIIOCALION SEFUCTUNEoiiiiieiieieeee e 45
6.3.1 Contraints Of AlIOCAtION ..viiiiiii e 45
6.4 Composite components AHOCALIONcccvevveiiiic e 46
PDM VIEWS .o e 47
7 HW RESOURCES VIEW ... 47
7.1 PhySiCal MagnitUdeS........c.oiuiiiiiiiiieiee et bbb 48
7.2 HWV PrOCESSOES ...ttt ettt b et s e e b e e st e b e b e enbesbeenbeens 49
7.2.1 (O ol a1l ol feTol ST Yo | USSP 49
7.2.2 PrOCESSOI ISA .ttt e e e e e s e e e s e e e et e e e st e e e et e e e nnaeaeanreeen 49
7.3 o 0ot TS0 @ Tod o TSRS 50
7.4 BlUS . ettt e e be e b et bt e e be et 52

7.4.1 TDIMA DUS ettt ettt b e b e b bt e b e b b e e 52

7.5 2T o o[- SRS 53
7.6 FPGA bbbttt 53
7.7 IMIBIMIOTTES ...t b et bttt 53
7.8 INEBEWOIK ..ottt 53
7.9 NETWOIK INTEIFACESveiiiiieice s 53
45 T 7@ B @o] 391 o o] 11 | £ ST 54
7.11 HW components’ Functional Modes.................cccooiniiiiiiiiiii e 54
712 POWEE CONSUMPTION .ouitiiiiiiiieiist ettt nbe e 55
7.13 ENErgy CONSUMPTION ..ottt bbbttt bbb 55
8 SW PLATFORM VIEW ..o 56
8.1 DIFIVEIS .ottt r et r et r et 57

8.1.1 2L 0o 11 e A SRR 58

8.1.2 P AT AMIBTETS ettt b e nre e 58

8.1.3 DBV LR ettt ettt ettt h bR bt sR e b e nRb e be e nnr e anbeennre e e 58
PSM VIEWS . ..o e e 59
9 ARCHITECTURAL VIEW ... 59
9.1 Modelling of the HW/SW platform architeCture ... 59
9.2 Platform Mapping: SW instances onto HW iNStanCescccovrervrenenieeiereneneneens 60
9.3 PIM to Platform MapPing ...cc.ooueiieiie ettt s sae e ve s e enraens 60
10 VERIFICATION VIEW ... 63
10.1 ENVIronmMent COMPONENTScoueiiiriiiitirieieiesieeeie sttt 63
10.2 Environment component FUNCLIONAlITYcooeiiiiiiiiiic s 63
10.3 Environment COMPONENT SEFUCTUIEcooviiiiiiiieeicse e 64
10.4 Environment component SErUCtUFe: POFEScoviviriiiriinieirie e 64
10.5 ENVIFONMENT SEFUCTUFE ...o.viviitiieiictiiteeet sttt 65
10.6 MemOry allOCALION.......cc.iiiiiieiiee e e e e 65
11 ANNEX |: METHODOLOGY STEREOTYPES.........cccvoiiiiieeei 67

-60f 73 -

12 ANNEXO IIl: METHODOLOGY ENUMERATIONS............ccoeiiiiinis 70

Index of Tables:

Table 1 Data Specifier Values 15
Table 2 Data qualifier values 16
Table 3 Communication semantics to be implemented 27
Table 4 MARTE stereotypes used for refining the HW platform 47
Table 5 HW attributes and physical units 49
Table 6 HwCache attribute values 50
Table 7 Definition of the structure attribute 51

Table 8 List of Stereotyes and attributes used in this modelling methodology. 70

-70f73-

Index of Figures:

Figure 1 Model views

Figure 2 Enumeration data types

Figure 3 Primitive types

Figure 4 Structure Datatype

Figure 5 Array modelling

Figure 6 Array dimension specification by the Shape stereotype
Figure 7 Undef dimesion of an array

Figure 8 <<DataSpecification>> stereotype attributes

Figure 9 Data Generalizations

Figure 10 Data Type generalization for Concurrency exploration
Figure 11 Files

Figure 12 ApplicationFile stereotype attributes

Figure 13 Interfaces

Figure 14 Array size arguments

Figure 15 Interface generalization and operationl of Interfacel
Figure 16 Interface Inherence

Figure 17 Inheritance between interfaces

Figure 18 Libraries

Figure 19 Auxiliary FilesFolder packages

Figure 20 ChannelTypeSpecification stereotype attributes
Figure 21 Examples of Channel types

Figure 22 Notification resource

Figure 23 Shared variable

Figure 24 Application components.

Figure 25 Main function of an application component.

Figure 26 Association Files-Application components

Figure 27 Associations of FileFolders with an Application Component
Figure 28 Main application component

Figure 29 Channel type attached to the Channel connector
Figure 30 Assambly and delegation connectors

Figure 31 shared variable used by several application components
Figure 32 Composite Component

11
12
12
13
13
14
14
15
16
17
18
19
20
21
21
22
23
23
24
25
26
28
28
31
31
32
32
32
33
34
35
36

-80f 73 -

Figure 33 Application Structure 1

Figure 34 Application Structure 2

Figure 35 Periodic application instance

Figure 36 System component with files associated

Figure 37 System component with libraries associated

Figure 38 System component with FileFolder package

Figure 39 Specification of Variables

Figure 40 UML constraint for application component variables

Figure 41 Annotation in a UML constraint for variable specification
Figure 42 Example of multiple constaints in the same application component
Figure 43 Constrains of the “Ilmac” application component

Figure 44 Constraints with different constrained elements

Figure 45 Specification of the System’s base path

Figure 46 Application components with different types of model variables
Figure 47 Memory partitions

Figure 48 Executables definition

36
37
38
38
39
39
40
40
40
41
41
41
42
43
44
44

Figure 49 Specialization of the System component of Memory Allocation View 45

Figure 50 Memory partition allocation

Figure 51 HW platform resources

Figure 52 Associating caches to a HWProcessor
Figure 53 Cache components

Figure 54 Specification of the attributtes blockSize and associativity
Figure 55 Cache specification

Figure 56 TDM bus component properties
Figure 57 HwProcessor mode specification
Figure 58 OS stereotype attributes (modificar)
Figure 59 OS component

Figure 60 Driver for DSP management
Figure 61 “Parameter” driver property

Figure 62 “Device” driver property.

Figure 63 HW & SW platform architectures

45
47
49
o1
51
52
53
55
56
S7
57
58
58
59

Figure 64 The System component of the Architectural View reflects a PSM, which

specializes and increments the PIM model.

Figure 65 Mapping memory partitions onto the HW/SW platform.

60
61

-90f 73 -

Figure 66 Mapping application component instances onto the HW/SW platform.

61
Figure 67 Environment component 63
Figure 68 Environment application components 63
Figure 69 Environment Application components with associated Files 64
Figure 70 Application instances of an environment component 64
Figure 71 Environment Application components 65
Figure 72 Definition of the environment structure 65

Figure 73 Generalization of Environment structure with the System component of
the MemorySpaceView 66

Figure 74 Allocation of environment component to the memory partitions 66

-10 of 73 -

UML/MARTE modelling methodology

1 Model View specification

The complete model is organized in views. Each of these views captures a specific
aspect of the system to be designed. The views are modeled as UML packages specified
by the corresponding stereotype. The stereotypes are:

<<DataView>>
<<FunctionalView>>
<<CommunicationView>>
<<ApplicationView>>
<<MemorySpaceView>>
<<HwResourceView>>
<<SwPlatformView>>
<<ArchitecturalView>>

<<VerificationView>>

«dataView»
Data Model

«functionalView»
Functional View

«applicationViews»
Application View

«s\WPlatformViews»
SWPlatform

«hWResourcesViews»
HWPlatform

«architecturalView»
ArchitecturalView

«memoryAllocViews
MemoAlloc

«verificationViews
VerificationView

«communicationView:
CommunicationView

Figure 1 Model views

-110f 73 -

UML/MARTE modelling methodology

PIM Views

2 Data View

The data model view focuses on the modelling of the data types that will be
involved in the interface services and application operations. These data types are

included in UML class diagrams.

The data model view focuses on the modelling of the data types that will be
involved in the interface operations. The UML elements that can be used to define the
data types of the system are UML Enumerations (enumerated types), UML Primitive
Types (basic data types such as “unsigned char”, “int”, “long long”, etc.) and UML
Data Types that are used to define new data types

The UML elements that can be used to define the data types of the system are
UML Enumerations (enumerated types), UML Primitive Types and UML Data Types.

2.1 Enumeration Data type
The enumerations are captured as UML Enumeration data types and the different

values of the enumeration are modelled as Enumeration Literals (Figure 2).

DATA

«Enumeration»= =Enumeration= =Enumeration»
ControlSignal CommunicationAction LogicFrameMNumber
RTS RECEIVE_ACTION XON
CTS TRANSMIT_ACTION XOFF

IGNORE_ACTION

Figure 2 Enumeration data types

2.2 Primitive Data type

The UML PrimitiveTypes are used to define basic data types. As can be seen in Figure
3, all these data definitions are classic primitive data types in coding.

«dataSpecification»
String

«dataSpecification»
Float

«dataSpecification»
Bool

Unsigned

«dataSpecification»| [«dataSpecification»
Short UnsignedChar

Figure 3 Primitive types

-120of 73 -

UML/MARTE modelling methodology

2.3 Derived Data type

The UML DataTypes are used to define new kinds of data. UML Data types are used
for modelling non-primitive data types (derived data types), structured data and arrays.

2.3.1 Structure Data type

Structured Data are modelled by using the MARTE stereotype <<TupleType>>. The
Datatype has a set of properties typed by specific data type or primitive type that
represent the fields of the structured data type.

«DataType»
«DataType» newsupport_pt
+ u :Integer
+cl :integer + v :Integer
+c2 :Integer +d : Integer
+ ¢3! Integer
+ tla: Float
+ t1b : Float
+ tlc : Float
+ t2a : Float «DataType»
+ t2b : Float newp_support
+ t2c : Float + *support_pt : newsupport_pt
+ size : Integer

Figure 4 Structure Datatype

When a field of the structure data types is a pointer, an asterisk is annotated in the name
(“newp_support” data type of Figure 4).

2.3.2 Array Data type

Arrays are modelled by using the MARTE stereotype <<CollectionType>>. The
collectionType stereotype is applied to a DataType model element. A property has to be
added to this DataType. The property should be typed by PrimitiveType or another
DataType. Then, in the attribute collectionAttrib of the stereotype CollectionType that
property should be attached (in Figure 5, property “array128i”).

«collectionType, dataSpecification»
«DataType»
m128i

«collectionType, dataSpecification»
«DataType»
ml28z

«DataSpecification»
size=(16,Bytes)

«CollectionType»
collectionAttrib=arraym128z

«CollectionType»
collectionAttrib=arrayl28i

«DataSpecification»
size=(96*26,Bytes)

+ arrayl28i : UnsignedChar [16]

«shaped» + arraym128z : Float

Figure 5 Array modelling

The dimension of the array is annotated in the multiplicity tag, if the array is
unidimensional. If the array is multidimensional, the attribute should be specified by the

-130of 73 -

UML/MARTE modelling methodology

MARTE stereotype <<Shape>>.The definition of the dimensions is {dim1, dim2, dim3}
(Figure 5 and Figure 6). In these cases, the definition of the size (in Bytes) of the array
should be annotated as (X,Bytes)x(Y,Bytes)x(Z,Bytes) or by the notation (X*Y*Z,
Bytes) (Figure 5).

= arrayMulty
Applied stereotypes:

LML

Profile = Shaped (From MARTE::MARTE_Annexes: :RSM)
Bppearance +-[= shape: shapespecification [1..1] = {6,3}
Advanced

Figure 6 Array dimension specification by the Shape stereotype

In some cases, the designer can define the dimensions of an array with no specific
value. Figure 7 shows two cases of how to define an array with no specific value of its
dimensions. In the case of a unidimensional array, the size is defined in the tag
multiplicity as [0...*] of the corresponding property of the Datatype. In the case of
multidimesion arrays (by appliying the stereotype Shape), the corresponding dimension
should be specified by “*”. Figure 7 shows these annotations.

«collectionTypes: «collectionTypes

#DataType:s «DataTypes
Undefarray UndeFarray
+ undefarray : Integer [*] shapeds + undefarray @ Integer

Bl undefarray

Applied stereotypes: @
LML PR Y 5F
Profile = Shaped (from MARTE::MARTE_Annexes: :RSM)
Appearance +-[E shape: shapeSpecification [1..1] = {*,&6}+

Advanced

Figure 7 Undef dimesion of an array

2.4 Specifying data types

The methodology includes a stereotype for completely specifying the data types. The
attributes associated with this stereotype are:

<<DataSpecification>>
size:NFP_Data [1]

pointer:Boolean [1]

dataSpecifier: DataSpecifier [1]

-14 of 73 -

UML/MARTE modelling methodology

dataQualifier: DataQualifier [1]
complexDataType : String [0..1]

Figure 8 <<DataSpecification>> stereotype attributes
The attributes are:

e size: defines the size of the data in its memory representation. The attribute size
is NFP_Data, a MARTE data type that specifies the size of a data. The notation
of this MARTE type consists of two values, the value and the unit. It can be
annotated in two different ways:

o size: NFP_DataSize[1] = (value=8, unit=Byte), where the value is a real
number and the unit might be bit, Byte, KB, MB or GB.

o size: NFP_DataSize[1] = (16,Byte).
e pointer attribute: specifies whether the data is a pointer
e dataSpecifier attribute: denotes the C data specifier
o dataQualifier attribute: denotes the C data qualifier

e complexDataType attribute: can only be used when the possible values of the
dataSpecifier and dataQualifier cannot specify the data type. For instance
complexDataType = const volatile unsigned long int.

The list of values of the DataSpecifier attributes is:

<<Enumeration>>

DataSpecifier
None signed int long long int
Char unsigned signed long long
signed char unsigned int signed long long int
unsigned char long unsigned long long
short long int unsigned long long int
short int signed long float
signed short signed long int double
signed short int unsigned long long double
unsigned short unsigned long int void
unsigned short int long long
int

Table 1 Data Specifier Values

-150f 73 -

UML/MARTE modelling methodology

The list of values of the DataQualifier attributes is:

<<Enumeration>>
DataQualifier

None
Const
Volatile
register

Table 2 Data qualifier values

2.5 Generalization of DataTypes

The modeling methodology enables the generalization of data types. If the general
element of the UML generalization is a Primitive Type (in Figure 9, the data “ULONG”
and “USHORT”) the specific data is specified by the values of the corresponding
primitive type captured in the attributes of the stereotype DataSpecification (the
attributes dataSpecifier or the complexDataType). If the general element of the UML
generalization is a Data Type (in Figure 9, the data “Byte”) the specific data is specified

by the DataType (in Figure 9 the “Qo0S” is specified as “BYTE”)

«dataSpecification»
«DataType»
BYTE

«PrimitiveType= «PrimitiveType»
«dataSpecifications| «dataSpecifications
ULONG USHORT
«DataTypes «DataTypes «DataTypes «DataTypes= «DataType»
IPaddress MACaddress SlotNumber Duration FrameNumber

Figure 9 Data Generalizations

2.5.1 Data Type Generalization for Concurrency Exploration

i

«DataType»
QoS

In order to enable the exploration of the concurrency structure of the system, Data type

generalization is required.

Some modelling constraints are applied to these data type generalizations:

e Both data are of an UML Data Type

e The stereotype DataSpecification should apply to both data types

e The attribute complexDataType of the DataSpecification stereotype
of the specific element of the generalization (in Figure 10, the Data
Type DataType Exploration) should be specifed by the name of the
general element of the UML generalization (in Figure 10, the Data

Type DataType).

¢ In the attribute size of the DataSpecification stereotype, the new and
different value of the size (in Bytes) of data should be specifed.

-16 of 73 -

UML/MARTE modelling methodology

«dataSpecification»
«DataType»
array_memc_tctu

«DataSpecification»
size=(44+36+1172,Byte)

«shaped» {shape={*36}} + array_memc_tctu : data_memc_tctu

«dataSpecification»
«DataType»
array_memc_tctu_exploration_biconcurrent
«DataSpecification»
size=(22%¥36*1172, Byte)
complexDataType=array_memc_tctu

Figure 10 Data Type generalization for Concurrency exploration

-17 of 73 -

UML/MARTE modelling methodology

3 Functional View

This view defines the functionality required/provided by the application components in
order to exchange data for each particular functionality execution. This functionality is
encapsulated in interfaces that are provided/required by the application components. At
the modeling level, the same interface can be provided by different application
components, although at implementation level these interfaces could be different.

Additionally, this view could include the set of files where the functionality
performed by each application component is defined with C/C++ code.

The UML elements used in this view are:

UML Interfaces for modeling the application interfaces
UML Operations for modeling the interface services
UML Parameters for characterizing the interface services

UML Artifacts for modeling the files

o &M W N E

UML comment for annotating deadlines

All these UML elements can be captured in Class diagrams. The next section will
present the elements of the functional view of the proposed example.

3.1 Files

The files that store the implementation source-code of the applications are modeled by
means of the UML element Artifact. These artifacts are specified by the UML standard
stereotype <<File>>. The Artifacts are specified by a name (annotated in the attribute
“name”) and in the attribute “File name” (where the name and the extension of the file
should be included, Figure 11).

«file» «file» «file»
image filter conversion
= Properties 2 . & Console =T =
image
UML File name image.c Name image
_ Is abstract true @ false Is leaf true @ false
_ Visibility public v
Manifestation S\ # & Owned attribute o o)

Figure 11 Files

-18 of 73 -

UML/MARTE modelling methodology

3.2 File specification

Each File can be specified in more detailed with additional information. This additional
information is captured in the stereotype <<ApplicationFile>>. The ApplicationFile
stereotype has the following attributes:

6. parallelized: Boolean. The file is specified after the parallelization process.

7. highLevel: Boolean. The file coresponds to a high-level language not directly
compilable (i.e Heptagon from which C can be optained).

8. implementation: String. The file is optimized to be executed in a specific HW
resource: DSP, NEON, GPU, etc. The name annotated should be the same as the
HwISA of the HW processor specified in the HwResourceView used for the
allocation.

9. notModifiable: Boolen. The file cannot be modified.

10. environment: Boolean. The file corresponds to a test bench of the system.

<<ApplicationFile >>

parallelized: Boolean [1]

highLevel: Boolean [1]

implementation: String [0..1]
notModifiable: Boolean [1]

environment: Boolean [1]

Figure 12 ApplicationFile stereotype attributes

3.3 Interfaces

The interfaces capture the characteristics of the services provided/required by an
application component in order to establish data exchange.

All the functions included in the same interfaces should be of the same type
(sequential, guarded or concurrent). The same function can be included in different
interfaces.

The application interfaces are modelled by means of UML interfaces. UML
interfaces should be stereotyped by MARTE <<ClientServerSpecification>>. A
ClientServerSpecification provides a way to define a specialized interface that allows its
nature to be defined in terms of its provided and required operations.

-190f 73 -

UML/MARTE modelling methodology

«clientServerspecifications «clientServerspecification:
zlnkterfaces «Inkerfaces
producerInkerface consumerInterface
+ getDatal + in: Inkeger{unique}} + getDatal + in: Inkeger{unique})
+ sendDatal): Integer + sendDatal): Integer

Figure 13 Interfaces

3.3.1 Interface Services
The interface services are modelled as UML operations. The functions can be:

e re-entrant (sequential): no concurrency management mechanism is associated
with the functions and, therefore, concurrency conflicts may occur. It is
modelled by specifying the UML operation as sequential.

e protected (guarded): multiple invocations of the function may occur
simultaneously at one instant but only one is allowed to commence. The others
are blocked until the performance of the currently executing function invocation
is complete. It is modelled by specifying the UML operation as guarded.

e not re-entrant and not protected (concurrent): multiple invocations of a
function may occur simultaneously at one instance and all of them may proceed
concurrently. It is modelled by specifying the UML operation as concurrent.

Service Arguments

The functions have arguments. These arguments are modelled as UML parameters.
These parameters ca be typed by the Data types defined in the Data Model. The UML
parameters can be in, inout and return. The order of the arguments in a function
prototype has to be specified. For that purpose, the name of the UML arguments that
model the function arguments should be defined as order:nameArgument where the
value order defines the order of the argument in the function prototype.

Pointer

The function arguments can be modelled as pointers. By appliying the stereotype
<<Pointer>>, the parameter is defined as a pointer.

Reference

The function arguments can be modelled as references by appliying the stereotype
<<Reference>>.

Qualifier

The function arguments can be specifed by a qualifier by appliying the stereotype
<<ParameterQualifier>>. Values associated with the ParameterQualifier stereotype are
“const”, “volatile” and “register”.

-200of 73 -

UML/MARTE modelling methodology

Parameter of a array size

In the functions that a parameter is typed by an array data type, the function declaration
can include parameters which are associated with the size of the arrays (“parameters-
array size”). In order to connect the “size” parameter with the corresponding “array”
parameter, in the attribute Default Value of the “parameters-array size” should include:

e name_parameter_array.length_x()
e name_parameter_array.length_y();
e name_parameter_array.length_z();

A parameter of the same “size” can be used for specifying the size of different arrays. In
this case, each array reference should be separated by a semicolon (Figure 14).

= Properties 22 . B Console

& 2:array_size

UML Name 2:aray_size
_ Is exception true @ false
Is stream true @ false
Direction in v
Visibility public v

array_size="array.length_x();

Default value *_ array_2.length_x(); an| |2 [K
array_3.length_y();" -
Type Integer a2

Figure 14 Array size arguments

3.3.2 Interface Inheritance

The methodology enables interface inheritance. This inheritance allows the redefinition
of operations of the interfaces partitioning the sizes of the data streams sent and
received. These streams are described in the model as parameters of these operations.
The interface inheritance enables the definition of different concurrent structures in
order to explore different design alternatives.

«Inkerfaces
Inkerfacel

£} operationl
=1, ownedParameter (5)
- & arravUnidimensional

«Interfaces
Interfacez

+. . R
= dimension

I arrayMultidimensional

. . .
= dimension_x

o R e B

. . .
= dimension vy

Figure 15 Interface generalization and operationl of Interfacel

-210f 73 -

UML/MARTE modelling methodology

All the functions of these interfaces are the same and have the same parameters (with
the same name and order). For the data partitioning, only the parameter to be used for
tha data splitting is necessary to be specified. The only difference is that one parameter
is specified by different data types. This new data type is a generalization of the
previous data type (see section on Data Types for exploration of concurrency structure).

Several parameters of a same function can be used for data splitting (Figure 16).
Several parameters of functions of a same interface can be used for data splitting.

The functions of an interface that are not used for data splitting should not have any
parameters (Figure 16).

«clientServerSpecification»
«Interface»
Interface_Disparity_2

+ removeSmall(+ in: Float_640_480_4{unique}, + in: parameters{unique}, + in: uint32_t{unique}, + in: uint32_t{unique})
+ computeDisparity(+ in: struct p_support{unique}, + in: struc tri{unique}, + in: Float_640_480_4 2{unique}, + in:uint32_t{unique}, ...

«clientServerspecification»
«Interface»
Interface_Disparity

+ removeSmall()
+ computeDisparity(+ in: Float_640_480_4{unique}, + in: Float 640 480 4{unique})

Figure 16 Interface Inherence

Additionally, interface inherence is used to join different concurrent flows. This is
explained through an example. The interfaces model the functions provided by the
application components for enabling the applications interconnections. In this case, a
different interface is used. In communication of the components “matchingRight”,
“matchinglLeft” and “sterecoMatching” three different interfaces (Figure 17) are used.
All these interfaces have the same function associated, “stereo_matching”. However,
the declaration of this function in these interfaces is very different. In the interface
“Interface_StereoMatching” the function “stereo_matching” is completely specified,
where all the properties of the function parameters are completely characterized (data
type, size, pointer, etc.). On the other hand, the functions of the other interfaces
(“Interface StereoMatching Right” and “Interface StereoMatching Left”) only specify
the parameters used for joinning. Specifically, in the “stereo_matching” two parameters
are used to join both concurrent flows: “img left” and “img_right”. In order to be
executed, the component “stereo_matching” has to be available for both images pre-
processors. However, the two images come from two different, independent, concurrent
flows. In order to specify that a parameter represents an element to be joined, the
corresponding join parameters have to be specified in the generalized interfaces; only
these parameters have to be specified in generalized interfaces (in the example,
“img_left” and “img_right”). Then, these parameters are not typed by any data type,
which it is understood by the code generator that the parameter is for joining concurrent
flows. In the case of Figure 17, the function “stereo _matching” of the interface
“Interface_StereoMatching Right” only includes the parameter “img left” which
denotes that this parameter should be provided by other components and, therefore, the

-220f 73 -

UML/MARTE modelling methodology

“stereo_matching” has to wait for it. For the interface “Interface StereoMatching Left”,
the parameter specified and not typed is “img_right”.

«clientServerSpecification=
«Interface»
Interface_StereoMatching

stereo_matching()

«clientServerSpecification» «clientServerSpecification»
«Interface» «Interface»
Interface_StereoMatching_Right Interface_StereoMatching_Left

stereo_matching(1:img_left) stereo_matching(2:img_right)

Figure 17 Inheritance between interfaces

3.4 Libraries

In order to enable the compilation of the application, a set of specific libraries can be
necessary. Therefore, in order to enable the generation of the makefiles, these libraries
should be modeled. These libraries are modeled as UML Artifacts specified by the
UML standard stereotype <<library>> (Figure 18).

«librarys «library» «library»
mps_rtlib_hlsim_pthread z rt
«library» «librarys» «library=
shared_intrinsics ato_dds SIp

Figure 18 Libraries

The Library artifacts can only be associated with the System component included in the
ApplicationView.

3.5 Auxiliary Files

As was described previously, each application component has the files that
implement each specific application functionality associated. However, these files can
require functions that are implemented in other files and which act as auxiliary files that
provide services for the application functionalities. These auxiliary files are modeled as
UML packages in order to represent the folder where these files are allocated. These
files are specified by the stereotype <<FilesFolder>>.

The FilesFolder stereotype has the following attributes:

1. parallelized: the file folder contains files produced after a parallelization
process.

2. highLevel: the file folder contains files that specify high-level functionality.

3. implementation: the file folder conatins files which are optimized to be
executed in a specific HW resource: DSP. NEON, GPU). .

-230f 73 -

UML/MARTE modelling methodology

4. notModifiable : the file folder contains files which cannot be modified for any
reason.

5. environment: the file folder contains a test bench.

«filesFolder» «filesFolders «filesFolder»
include src data

«filesFolder» «filesFolder»
rtlib exec

Figure 19 Auxiliary FilesFolder packages

The FilesFolder package can be associated with application components
(RtUnits) and to the System components included in the ApplicationView.

-240of 73 -

UML/MARTE modelling methodology

4 Communication View

The Communication view defines the communication mechanisms that enable the
application components’ communication.

The UML element used in this view is the UML Component used to model the
communication components. Class diagrams are used for defining these communication
components.

4.1 Channel type specification

The generic communication mechanism is modelled by the MARTE stereotype
<<CommunicationMedia>> that represents the means to transport information from one
location to another. Then, new characteristics can be added to the communication media
in order to define different communicatuion semantics

4.1.1 Storing Communication Mechanism

A CommunicationMedia can be specified with additional characteristics in order to
define different communication semantics. The CommunicationMedia could have the
capacity to store function call requests. To model this characteristic, the MARTE
stereotype <<StorageResource>> can be applied to the CommunicatinMedia. The
attribute resMult of the StorageResource denotes the number of function call requests
that can be stored.

4.1.2 Communication semantics associated with a client application

Some additional characteristic can be added to the communication media in order to
model the communication semantics associated with the application component that
uses the communication media to access a service provided by another application
component.

The stereotype <<ChannelTypeSpecification>> adds additional characteristics to
the communication media in order to model different communication semantics.

<<ChannelTypeSpecification>>

blockingFunctionDispatching:Boolean [1]

blockingFunctionReturn:Boolean [1]

priority : integer [0..1]
timeOut:NFP_Duration [0..1]

ordering : Boolean [1]

Figure 20 Channel TypeSpecification stereotype attributes

The attribute blockingFunctionDispatching defines the behaviour of the client
application when it requires a service from a server application: the client application is

-250f 73 -

UML/MARTE modelling methodology

blocked until the server application attends to the service request or it is stored in the
channel.

The attribute blockingFunctionReturn defines whether the client application is
blocked waiting for the response from the service called.

The attribute priority defines the priority associated with client-application client
in order to attend service requests coming from the channel.

The attribute time out defines the maximum time for waiting for a function’s call
response.

The attribute ordering defines whether the concurrent calls transmitted through
the channel have to be synchornized in the function return and to be dealt with as an
ordered set.

«communicationMedia, storageResource, channelTypeSpecification» «communicationMedia, storageResource, channelTypeSpecification»
«Component» «Component»
channel_sequential channel_pipeline
«ChannelTypeSpecification» «ChannelTypeSpecification»
blockingFunctionDispatching=true blockingFunctionDispatching=true
blockingFunctionReturn=true blockingFunctionRetum=false
priority=1 priority=1

timeOut=(20,s) timeOut=(20,s)

«communicationMedia, storageResource, channelTypeSpecification»
«Component»
channel_concurrent
«ChannelTypeSpecification»
blockingFunctionDispatching=false
blockingFunctionRetum=false
priority=1

timeOut=(20,5)

Figure 21 Examples of Channel types

The following table describes the possible semantics that can exist depending on the
values of the attributes blockingFunctionDispatching, blockingFunctionReturn of the
stereotype <<ChannelTypeSpecification>>, the resMult attribute of the MARTE
stereotype <<StorageResource>> and the attribute srPoolSize of the MARTE stereotype
<<RtUnit>> (explained in the next section). Additionally, the table specifies the
behaviour of the function call communication during execution time. The table denotes:

1. Capacity available in execution time.

2. Value of the attribute blockingFunctionDispatching.
3. Value of the attribute blockingFunctionReturn.
4

Service threads: the application component has threads available in order
to attend to service requests.

o

Store, the function call request should be stored or not in the channel

6. Block call, the client should be blocked bnefore dispatching its function
call request

7. Block return, the client should be blocked waiting for finalization of the
function called.

-26 of 73 -

UML/MARTE modelling methodology

resources are available.

8. Exec, the function called can be executed or it should be delayed until

Static properties

Run-Time State

Behaviour (Semantics)

Of channel of OfCalled | channel | Caller (Client) Called (Server)
channel RtUnit RtUnit RtUnit

Blocking Blocking | Room Schedule | Call Block Block on | Executed

Fl.Jnction. Function for a Call Resqurce Stored on Call Return

Dispatching | Return Available
true true Yes Yes No No Yes Yes
true true Yes No Yes No Yes Delayed
false true Yes Yes No No Yes Yes
false true Yes No Yes No Yes Delayed
false false Yes Yes No No No Yes
false false Yes No Yes No No Delayed
true false Yes Yes No No No Yes
true false Yes No Yes No No Delayed
true true No Yes No No Yes Yes
true true No No No Yes Yes Delayed
false true No Yes No No Yes Yes
false true No No No No No (*) No
false false No Yes No No No Yes
false false No No No No No No
true false No Yes No No No Yes
true false No No No Yes No Delayed

Table 3 Communication semantics to be implemented

4.2 Synchronization Mechanisms

To model the synchronization mechanisms among application components, the MARTE
stereotype <<NotificationResource>> is used. NotificationResource supports control
flow by notifying awaiting concurrent resources about the occurrence of conditions.

-270f 73 -

UML/MARTE modelling methodology

«notificationResource:s
«Components»
notification

Figure 22 Notification resource

4.3 Shared Variable

The two previous communication mechanisms can be used to connect application
components that are allocated in the same memory partition or in different memory
partitions. An additional communication mechanism can be used in order to enable the
communication among application components. This communication mechanism is the
shared variable. The shared variable is modelled by the MARTE stereotype
<<SharedDataComResource>>. SharedDataComResource defines a specific resource
used to share the same area of memory among concurrent resources to exchange
information by reading and writing in this area of memory.

The shared variable can be protected or not. To model a protected variable the
stereotype attribute isProtected should be used. For specifying the type of the shared
variable, a UML property should be included in the UML Component
SharedDataComResource. This property (Figure 23, attribute “type”) should de typed
by a DataType (Figure 23, Float) included in the DataView. Then, in the stereotype
attribute identifierElements this property should be attached.

«sharedDataComResources
«Components
SharedVariable
«SharedDataComResource»
identifierElements=[type]

+ type : Float

Figure 23 Shared variable

-280of 73 -

UML/MARTE modelling methodology

5 Application View

This view serves to capture the application. A component-based approach is used
to capture the application model. The application model is captured as a component,
which in turn can be composed of other components. Three types of components are
supported, active, passive and composite components. An application component
communicates with other application components through client-server ports. These
ports have associated required/provided interfaces. Provided interfaces declare the
functionalities implemented by the component and accessable by other components.
Required interfaces declare the functionalities invoked by the component but
implemented by others. The application view serves to declare and define these
components and to interconnect them, eventually generating the “top” application
component, called system component in the application view context. The system
component (and by extension, a composite component) is described through the
instantiation and interconnection of declared application components. All these
instances and interconnections configure the application architecture. Application
components are interconnected through channels. A channel can be captured as a simple
port-to-port connector (an implicit semantic is assigned). Channel semantics can be
configured (the connector is decorated with a stereotyped whose attributes enable such a
configuration).

Source code can be associated to the Application View. This is done by
associating specific functions and the files containing them the application components.
Additionally, paths to those files to complete the link can be provided. In any case, the
application model shall be platform independent.

To sum up, this view includes:

e Application architecture and declaration of the application components instanced
on it.

e association of source code (as Files previously captured in the FunctionalView)
to the application components (allowing the specification of paths)

e association of libraries

The UML elements used in this view are:

1. UML Component for modeling the application components and for defining the
element where the complete application structure is captured

2. UML Port are the interaction points between the component and its environment

3. UML Connectors for connecting application component instances. They can be
stereotyped with <<Channel>> for configuring the specific semantics of the
channel.

4. UML Operations for defining internal functions of the application components

-290f 73 -

UML/MARTE modelling methodology

5. UML Parameters for characterizing the internal functions of the application
components

6. UML Abstraction for associating Files defined in the FunctionalView with the
application components

7. UML constraint for defining paths, flags, compilers, etc.

8. UML links for associating constraints with model elements

Class diagrams are used for defining the application components and associating
Files, FilesFolder and constraints with application components.

Class diagrams are used for associating Files, FilesFolders, Libraries and
constraints with System components.

Composite structure diagram is used for defining the structure of the application
system.

5.1 Active Components

Active application components are modelled as UML components with the MARTE
stereotype <<RtUnit>> (Figure 24). In short, this type of components will be named
RtUnit component or RtUnit. A RtUnit component has its own execution threads, its
associated C files, and will provide/require services to/from other application
components by means of provided and required interfaces. These provided/required
interfaces and C files are defined in the FunctionalView. A RtUnit component can have
an associated set of threads in order to execute some specific functions concurrently.

5.1.1 Application Component Attributes
The following attributes of the <<RtUnit>> stereotype are considered (Figure 24):

e The attribute isDynamic. A value isDynamic=true specifies that the
application component dynamically creates threads in order to attend the
requests to the services provided by the RtUnit.

e The attribute srPoolSize specifies that the RtUnit has a finite set of threads
to attend to the requests to the services provided.

e The attribute srPoolPolicy should be infiniteWait to denote that, in the
event that there is a service request and the RtUnit cannot create a thread
to attend the service (because the srPoolSize limit has been reached), the
RtUnit waits until one of its server threads is realeased (after completing a
service request).

e The isMain attribute can be used to denote the main function of the
application (thus the entry point of an application).

-300f 73 -

UML/MARTE modelling methodology

«rtunits «rtunits «rtunits»
«Component» «Component» «Component»
Starting MEMC TCTU
«RtUnit» «RtUnit» «RtUnit»
isMain=true isDynamic=true isDynamic=true
srPoolSize=10 srPoolSize=10
srPoolPolicy=infiniteWait srPoolPolicy=infiniteWait
«rtunit» «rtunit»
«Component» «Component»
EC BP
«RtUnit» «RtUnit»
isDynamic=true isDynamic=true
srPoolSize=10 srPoolSize=10
srPoolPolicy=infiniteWait srPoolPolicy=infiniteWait

Figure 24 Application components.

5.1.2 Main function of the Application Component

In order to define the main function of the application, the “main” attribute of the
<<RtUnit>> stereotype is a used. The attribute is assigned a UML operation captured in
the functional view (Figure 25).

«rtUnit»
«Component»
mainCompo
«RtUnit»
main=main_func

Figure 25 Main function of an application component.

The fact of defining the main function of the component involves that the
component has implicitly associated a static thread (Figure 25) that executes such a
function.

In this case, the main function can have associated specific, initial values to its
parameters. In order to annotate thoso values, a UML constraint is used. The constraint
has to be owned by the System component of the view. In the constraint, the name of the
functions and the values of their parameters is captured by means of the following
syntax: “$initValue=nameFunction(valuel,value2,value3)”.

5.1.3 Association of Files with Application Components

The specification of the set of files associated with an application component is defined:
e By using an UML Class diagram

e By using the File UML artifacts (code files) defined in the FunctionalView.

The code files are associated with a RtUnit component by means of an UML abstraction
specified by the MARTE profile <<Allocated>> (Figure 26).

-310f 73 -

UML/MARTE modelling methodology

artlinits wrtlnits
«Components «Components
EC TCTU
) M _
i =abstractions= | =abstraction»
! «allocateds : «allocated=
: 1
=file= «files
EC cTu

Figure 26 Association Files-Application components

5.1.4 Association of File Folders with Components

The application components can have associated FileFolders. These FilesFolders are
associated with the application components such as Files: by using a UML abstraction

specified by the stereotype <<allocated>>.

«filesFolders «filesFolder»
Imac facets

«filesFolder»
states

N '
«abstraction» ~ = «abstraction» | «abstraction» .
«allocated> "~ .ajlocateds ! «allocated» __-~
N ' -
v .-
wrtUnits = «Allocated»

«Allocated»
«abstraction» |
«allocated»

1
«filesFolder»
mac

«Companent» hesooo «file»
Imac ComponentCoreH
«filex»
A ComponentCoreCpp
i

Figure 27 Associations of FileFolders with an Application Component

5.1.5 The main application component

The main application component is identified by the RtUnit attribute isMain, specified
as “true”. Thus, this RtUnit component should have an associated UML operation. This
UML operation should be given the same name as the main procedure of the
functionality. This UML operation should be associated to the RtUnit component

through the RtUnit attribute main.

£] Starting
Applied stereotypes:

«rtUnit» Profile - RtUnit (from MARTE::MARTE_DesignModel::HLAM)
«Component» _ + B isDynamic: Boolean [1..1] = true
Starting + B isMain: Boolean [0..1] = true
«RtUnit» + O srPoolSize: Integer [0..1] = 0

iSM,ain:trl.'le Applied stereotypes:
main=main_app _ '
Profile & STFODIWAILNG THME: NFF_LUrduorn [U..1] = nun
= operationalMode: Behavior [0..1] = null
_ + & main: Operation [0..1] = main_app
= memorySize: NFP_DataSize [0..1] = null

Figure 28 Main application component

-320f 73 -

UML/MARTE modelling methodology

5.1.6 Ports

Communication among application components is established through UML ports. The
ports denote the services encapsulated in the interfaces that the application component
required or provided. These ports must be modeled in different ways depending on the
type of communication.

When communication is by means of function calls of interfaces, the UML ports should
be specified by the MARTE stereotype <<ClientServerPort>>. In the attribute kind of
the ClientServerPort stereotype, the port is specified considering whether the port
provides or requires an interface. In the attributes provinterfaces and reqlnterface, the
interface required or provided by the port is defined. Only one interface can be attached
to the ClientServerPort. The ClientServerPort can be either provided or required.

In other communication mechanisms, the UML (shared variable and synchronization
mechanism) ports should not be specified by any stereotype.

5.1.7 Connectors

The ports are connected by using UML connectors. The conectors can represent
simple connections or communication channels.

The former defines the connection between an application element and a shared
variable. Additionally, in a communication based on interfaces, a simple connector
denotes a pure RCP (Remote Call Protocol) in the client-server communication
paradigm.

Channels

The connectors among the application elements can respresent specific communication
channels with a well-defined semantics. In this case, the UML connectors should be
specified to define the semantics of communication established among the application
components. The stereotype <<Channel>> enables the specification of a UML
connector by a communication mechanism defined in the CommunicationView.

This sterotype has the attribute channelType (Figure 29) that is typed by a
CommunicatioMedia component for representing tthe channel type and which is
defined in the CommunicationView.

] Properties &3

Channel_Connector

_ Applied stereotypes: 2= | g Property values:

Profile = Channel (from essyn_Profile) . model::ChannelTypel
_ + O channelType: CommunicationMedia [1..1] = ChannelTypel

Figure 29 Channel type attached to the Channel connector

Only UML assembly connectors (in Figure 30 the UML connector established between
the elements “imageAcquisition” and “imagePreProcessing”) should be stereotyped by
the Channel. The UML delegation connectors (in Figure 30 the UML connectors that
interconnect the “imageAcquisition” ports “port_Condev”, “port_disDev”’ and

-330f 73 -

UML/MARTE modelling methodology

“portCaplmage”) with ports of the System which establishes communication with the
environment.

imageAcquisition _
«clientServerPort= structure
port_ConDev part_ConDev

(-1

«clientServerPort=

fram_starting

«clientSarverPort= [:l

E port_disDev :I port_disDev «channel»

«clientServerPort=
port_caplmage

port_caplmage

=clientServerPort=

to_image_preprocessing
=channel»
=clientServerPort=

from_image_Acq

imagePreProcessing
structure

Figure 30 Assambly and delegation connectors

Communication Mechanism and Interfaces

The previous communication mechanisms enable the information exchange among
applications through function calls provided by interfaces. The same interface can be
provided by different application components or can be provided through different ports
by the same application interfaces. The Channel connectors that are associated with the
same interface represent the same channel in the implementation stage. Therefore, these
Channel connectors should be typed by the same communication media defined in the
Communication View, thus ensuring the model coherence: the communication media
should have the same interface associated with the application ports.

Connection through shared variables

A shared variable is used for communicating two or more application components. For
connecting application components with the same shared resource, an instance of a
SharedDataComResource has to be included in the composite structure diagram of the
System component of the ApplicationView. Then, the application components are
connected to this SharedDataComResource instance by using UML connectors (Figure
31).

«Component»
system
structure

applil
structure
T sharedVarl appli3
structure structure
appli2
structure

-340f 73 -

UML/MARTE modelling methodology

Figure 31 shared variable used by several application components

5.2 Pasive Components

A different set of component can be captured: components that represent information
shared by several components and whose concurrent access must be protected by some
synchronization mechanism. These components are stereotyped with the MARTE
<<PpUnit>>. It is a passive element.

The access semantics associated to the PpUnit component is defined by the attribute
concPolicy.This attribute establishes the policy applied to the services provided by
PpUnit. It may take the following values:

e sequential: no concurrency mechanism is associated so the system
designer must assure that no concurrent invocations are produced.

e guarded: several invocations may occur concurrently, but only one is
attended at a time. The rest are blocked until the execution of the
invocation being attended finishes.

e concurrent: several invocations may occur and be attended at the same
time.

The services provided by the PpUnit are enclosed in interfaces and offered by
provided ClientServerPorts. All the interfaces provided by a PpUnit component
inherent the value of the attribute concPolicy of such PpUnit component.

As in the case of the RtUnit components, they can have associated files, files
folder, libraries, and the definition of paths language...

There is a modelling constraint: the channels connected to the PpUnit instances
must blocking since the PpUnit is a passive element and it does not have resources for
attending income calls but the resource of the calling element.

5.3 Composite Components

The methodology enables to model composite application components. These
components have an internal structure, composed of interconnected application
components. Composite components are specified as UML components decorated with
the UML standard stereotype <<Subsystem>>.

The internal structure is captured through a composite structure diagram
associated to the Subsystem component. In this diagram, instances of application
components or other composite component instances are created and connected via
port-to-port connections.

The Subsystem components has ports. These ports are connected to the ports of
the internal application instances. The name of a ports of the Subsystem components
(parent ports) should have the same as the name of the port of the internal application
component instance it is connected to (children port). Parent and children ports shall
have the same interface and the same type of interface (both required or both provided).

-350f 73 -

UML/MARTE modelling methodology

The connectors between a parent port and a children port must not be stereotyped
(assembly connectors). Only connectors connecting internals application components
can be specified as channels (applying to them the <<Channel>> stereotype).

Subsystem components are not expected to have any File, FileFolder, or library
library associated.

«subsystem»
«Component»
CompositeComponent
structure

«clientServerPort»
«clientServerPort»

| inl applis in1_appli5 structure
[0 outl
«channel»
«clientServerPort» appli6 lientServerport.
T o o Kicnllen —

Figure 32 Composite Component

5.4 Application Architecture

The top application component is captures as a UML component decorated with the
<<System>> stereotype. Within the application view context, this is call the System
component. Only one System component should be defined within the ApplicationView
package.

The System component constains instances of the RtUnit application components
interconnected through connectors. The application architecture is captured in a UML
Composite Structure diagram associated with the System component.

«systems
«Components
MPEG-4_Encoder_PIM

structure

+ memc : MEMC | | + tetu : TCTU

structure to tetw «channels structure
c - {channelTypeSpecification=channel_sequential} o <clieniSenerPors
=clientServerPorts from memc {reginterface=[Interface_TCTU| EC]}
{reginterface=[Interface_MEMC|TCTU]} «clientServerPorts -
o {provinterface=[Interface_MEMC| TCTU]} ’T‘

from_starting
«clientserverPorts
{provinterface=[Interface_Starting MEMC]}

=clientServerPorts

{provinterface=[Interface_TCTU_EC]}
«channel»

{channelTypeSpecification=channel_sequential}

«clientServerPorts

{reginterface=[Interface_EC BP]}
«clientServerPorts
{reginterface=[Interface_Starting| MEMC]}

[]{ to_memc
+ starting : Starting «clientServerPorts

{provinterface=[Interface_EC_BP]}

«=channel»
channelTypeSpecification=channel_sequential

structure from ec

+bp: BP
structure

Figure 33 Application Structure 1

-36 of 73 -

UML/MARTE modelling methodology

imageAcquisition

‘structure
port_ConDev

] port_disDew

=channe

wclientServerPorts
from_starting

‘structure

=channe

«clientServerPorts
from_stereomatching

9

«clientServerPort= from_stereomatching

«channels
sclientServarPorts
‘to_stereosegmentation

«clientServerParts

from_starting

Figure 34 Application Structure 2

5.4.1 System ports: [/O communication

The System component communicates with the external environment. This environment
communication is established through ports. These UML ports should be specified by
the MARTE stereotype <<ClientServerPort>> (Figure 30 and Figure 34), specifying the
correct values of the attribute kind, provinterface and reqinterface in the case the
communication is dealt with using function calls. in Others (shared variable and
synchronization mechanism), the ports are not stereotyped.

These System ports are connected to application instances. This connection is port-to-
port. In order to keep consistence, the system ports connected to application instance
ports should have the same name (Figure 30 and Figure 34). The connection between
the System port and the application port is never stereotyped (Figure 30 and Figure 34)
since it does not represent a real channel, so the stereotype <<Channel>> must no be
applied on these connectors.

5.4.2 Periodic Application Instances

An application instance can be characterized by a period, triggering its execution
according to that period.

The period of an application component is modelled by a UML comment specified by
the MARTE stereotype <<RtSpecification>>. In the attribute occKind the period is
annotated as:

= periodic (period= (value, unitTime))

Then, the RtSpecification comment is associated to the RtUnit instance component by
using a UML link (Figure 35).

-370f 73 -

UML/MARTE modelling methodology

occKind=periodic(period=(5,ms))

+ main : mainCompo
structure
«clientServerPort»

port

«rtSpecification»
«RtSpecification»

Figure 35 Periodic application instance

5.4.3 System Files

The System component may have associated files. These files are defined in the
FunctionalView and identified by the UML standard stereotype <<File>> and by the
stereotype <<SystemFile>>. These files are associated with the System component
through a UML abstraction specified by the MARTE stereotype <<allocated>>, as is
shown in Figure 36.

wsyskems
«iZamponent:
PIM
N M _

1 «abstraction: 1 «abstraction:
! «allocateds : zallacated:

))

«file, svstemFiles «file, systemFilex
filel filez

Figure 36 System component with files associated

5.5 Libraries

In order to enable the compilation of the application, a set of specific libraries can be
required in order to enable the makefiles’ generation

The Libraries defined in the FunctionalView are associated with the System
component by means of UML Use relations, as Figure 37 shows.

-380f 73 -

UML/MARTE modelling methodology

«lse»

«library» T
s =<~ -
el «Component» @ = ato_dds
MPEG-4_Encoder_PIM T
«use» -
i use
«library» L i Treeo | «library»
z / . o
e ' wlse»
. «user)
£ y
ibrary» «library»
phared_intrinsics mps_rtlib_hlsim_pthread

Figure 37 System component with libraries associated

5.6 Files Folders

The FilesFolders packages defined in the FunctionalView are associated with the
System component by a UML abstraction association specified by the MARTE
stereotype <<Allocated>>. The designer is free to include the corresponding UML
artifact files in these packages in order to model the real auxiliary files explicitly; this is
not mandatory.

«filesFalder
include «abstraction» «abstraction»

«allocateds» «allocated»

- «Component» @ «filesFolder»
~~-x/ MPEG-4_Encoder_PIM -] exec
«filesFolder» .7
sIc -7 «abstraction»

«allocated»
S S

-7 «abstraction»
«allocated»

! «abstraction»
+ «allocated»

| -
«filesFolder» ! 32{2““"“*’”
rtlib :

Figure 38 System component with FileFolder package

5.7 Modelling Variables

The model has modelling variables. More specifically, in the modelling of the
application, these modelling variables are used to define characteristics required for
completely characterizing the application components of the system in relation to the
makefiles’ generation and code generation. The modelling variables are:

1. language: specifies the language in which the specific application
functionality is implemented. Not mandatory (by default, it is “C”).

2. path: specifies the path where the functional files are allocated in the
host. Mandatory for the System component.

3. path_system: specifies a path of a File or FilesFolder of a application
component that has as first part of the absolute path, the path associate to
the System component

4. creation: specificies the mechanism used to create a specific application
component instance. Mandatory only when the language is “C++".

-390f 73 -

UML/MARTE modelling methodology

5.8 Modeling Variable Specification
The variables are annotated as $nameVariable="valueVariable’; as Figure 39 shows.

MAC_LMAC_variables
{$language="c++";
$path="yaw/components/mac/";
$creation="ComponentCore";}

Figure 39 Specification of Variables

The model variables are annotated with UML Constraints owned by the component
(RtUnit, System, etc.) denoted in the ownedRule of the component (Figure 40) and in
the “Context” attribute of the constraint (Figure 40).

= =] Starting

E Properties 523 # b &
- t ownedRule (1)
+ {7} StartingApplication_Path % StartingApplication_Path
+ 1, ownedAttribute (1) UML Name StartingApplication_Path
+ t ownedOperation (1) _
= £] MEMC Visibility public
. dRule (1 —
t ownedRule {).] Context €] Starting el 55 2 (8 Specification
+ {72 MEMCApplication_Path — - -
+ 1, ownedAttribute (2) Constrained eleme
= T =] starting

— t ownedRule (1)
+ {z TCTUApplication_Path
+ 1, ownedAttribute (2)
+ £]EC
+ £1BP
— =1 MPEG-4 Encoder PIM v [}

Figure 40 UML constraint for application component variables

The “Specification” attribute of constraint contains the declaration of the variables. The
variable annotation is captured in a LiteralString (Figure 41).

+ {z} StartingApplication_Path {3 StartingApplication_Path
+ t, ownedAttribute (1) UML
+ t ownedOperation (1)
- o memc I—
- t ownedRule (1) _
+ {2} MEMCApplication_Path =

+ 1, ownedAttribute (2) © @ Edit LiteralString =iz 38 |

- £1TCTU
— t ownedRule (1)
+/ (2 TCTUApplication_Path value $Path="/components/*
+ 1, ownedAttribute (2)
+ =] EC
+ £] BP
— =1 MPFG-4 Encoder PIM

Name Ppphcatmn\/anab\es

OK

Figure 41 Annotation in a UML constraint for variable specification

Then, the constraint is associated with an element model that is included in the
ConstrainedElement attribute of the UML constraint (Figure 40). The
ConstrainedElement attribute denotes the model element which the variables annotated
in the constraint are applied. This association is captured by using and UML link
between the constraint and the model element.

It is necessary to distinguish which element is the owner of the constraint and the
element to be specified by the variables of the constraint. In Figure 42, there are four
constraints (“MAC_LMAC states_facets”, “MAC_LMAC varibles”,
“MAC _InterfacesFolder LMAC_common” and “MAC_Folder LMAC”).

-40 of 73 -

Ll & &) 8 Specification = ApplicationVariables="$Path="/components/™ |&a| |

= Applic

P

2l 8
B2

UML/MARTE modelling methodology

T
«abstraction» *. «abstraction» i «abstraction» J /,- /
«allocated» *._ sallocated» ! «allocated» e / '_,f
K W L : [r'l Fi
«rtUnit» =" «abstraction» / ; /
«Component» e wallocated» | «file» /
MAC_LMAC_variables [N Imac ComponentCoreH 4

{$language="c++";

$path="yaw/components/mac/"; .
Screation="ComponentCore";}] «filer

A «abstraction» ComponentCoreCpp

I
. «allocated»
«abstraction» |
I
I

«filesFolder» «filesFolder» MAC_LMAC_states_facets
Imac facets | e {$path="Imac/"}
«filesFolder» T
states

«allocated»

= 4]{*$path‘syStEm=--yawﬂnterfaces,"w:
= = B e -

MAC_InterfacesFolder_LMAC_common

{spath_system="yaw/common/";
}

MAC_Folder LMAC j

Figure 42 Example of multiple constaints in the same application component
All these UML constraints are owned by the application component “Imac” (Figure 43).

- £] Imac
- t ownedRule (4)
7} MAC_LMAC states_facets
iz} MAC InterfacesFolder LMAC commoan
{2} MAC_Folder_LMAC
{7} MAC_LMAC variables

+

+ o+ o+

Figure 43 Constrains of the “Imac” application component

However, not all of these constraints are applied to the same model element, denoted by
the attribute “ConstrainedElement” of the constraints (Figure 44).

{z# MAC_InterfacesFolder LMAC_common {## MAC_LMAC_states_facets
uUML Name |MAC_InterfacesFolder_LMAC_common uUML Name |MAC_LMAC states_facets
_ Visibility public _ Visibility public
— —
Context =] Imac Context =] Imac & 58 &) 38 Specific

Constrained eleme

Constrained eleme
ComponentCoreH

By mac ComponentCoreCpp
Ex facets
Ea states
iz} MAC_Folder_ LMAC ## MAC_LMAC_variables
UML Name |MAC_Folder LMAC UML Name |MAC_LMAC variables
= Visibility public = Visibility public
Context =1lImac | e Context =] Imac e &3 2 8

Constrained eleme

Constrained eleme
B3 mac

=1Imac

Figure 44 Constraints with different constrained elements

5.8.1 System Components
The model variables that may be associated with a component constraint are:
1. language

-410of 73 -

UML/MARTE modelling methodology

2. path

5.8.2 Language
The variable $language defines the coding language of the complete application.

5.8.3 Path

As was mentioned previously, at least the $path variable has to be defined in the
model. This variable has to be associated with the System component included in the
ApplicationView. Through this variable, the designer annotates the absolute path where
the application functionality files are allocated (Figure 45), which act as base paths for
the rest of the system. This is mandatory.

5.9 Association of source code to application components

The model variables that can be associated with a RtUnit application component
constraint are:

1. language
2. path

3. path_system
4. creation

5.10 Concatenation of paths

The creation of the makefiles from the information captured in the model requires the
paths of the different model elements to be exact. The criteria for composing these paths
is a concatenation of different paths.

«system» 1]
«COmﬁinent» WFModelVariables
{$path="home/leonidas/yaw/files";
$language=c++;}

Figure 45 Specification of the System’s base path

The base path is the $path annotated in the System component. This path is used for
creating the complete paths of the different files, filesfolder, etc. of the application
(Figure 45).

Then, each application component has its own relative path. In Figure 46, the
application component “Ilmac” has the associated constraint “MAC_LMAC variables”.
This constraint specifies the $language, $creation and $path. In relation to the $path,
the base path for the files and files-folder associated with this component is
“home/leonidas/yaw/files/components/mac/” that is, the concatenation of the System’s
base path and the application component path.

-42 0of 73 -

UML/MARTE modelling methodology

«filesFolder» «filesFolder» MAC_LMAC_states_facets
Imac facets | {$path="Imac/"}
«filesFolder»
states

T
~ ! ;S
«abstraction» . «abstraction» | «abstraction» . Vi Vi
«allocateds» ~. «allocated» ! «allocated» -~ / /
~ i - ¥,
«rtUnit» P «ablsltractign» ‘ ' ”,"
«Component» e 18 located» | «file» /
MAC_LMAC variables 1Y Imac ComponentCoreH /

{$language="c++";

$path="yaw/compenents/mac/"; -

Screation="ComponentCore";} «files

A «abstraction» ComponentCoreCpp
«allocated»

I

«abstraction» |
I

«allocated» | MAC_InterfacesFolder LMAC_common

= T -1 {$path_system="yaw/interfaces/"; IT
m = —— e _— }

MAC_Folder LMAC
{$path_system="yaw/common/";
}

Figure 46 Application components with different types of model variables

To complete the path of the files “ComponentCoreH” and “ComponentCoreCpp”’
in Figure 46, to the previous path (“home/leonidas/yaw/files/components/mac/”), the
path associated with the Files IS concatenated as well:
“home/leonidas/yaw/files/components/mac/Imac/”. Finally, the name of the attribute
“File name” of the File model element (see section 3.1) is concatened. Thus, the path of
the File is “home/leonidas/yaw/files/components/mac/lmac/ComponentCore.h”.

In the case of the FilesFolder “Imac”, it does not have any constraint associated.
In this case, the path is the System path (Figure 45) plus the application component path
(Figure 46) and the name of the FileFolder (or File):
“home/leonidas/yaw/files/components/mac/lmac/”.

A diferent case is the specification of the path for the path “mac”. This path has an
associated constraint where a $path_system variable is annotated. In this, the creation of
the path does not consider the base path of the application component (in Figure 46,
“yaw/components/files/”). In this case, the System path (Figure 45) is concatenated with
the value of the $path_system variable and the name of the FilesFolder:
“home/leonidas/yaw/files/yaw/interfaces/mac/” and
“home/leonidas/yaw/files/yaw/common/mac/”.

When two or more constraints are associated with a File or FileFolder, this means
that there are two or more Files or FilesFolders with the same name but in different
locations (Figure 46, “mac” FilesFolder).

-430of 73 -

UML/MARTE modelling methodology

6 Memory Space View

The memory space view contains the components that identify the memory spaces,
which represent the executables of the system. Thus, an executable is a memory space
in this methodology. These memory partitions are used for grouping application

components.
The UML elements used in this view are:

1. UML Component for modeling the memory partition types and other Components

in order to define executables

2. UML Generalization for relating the System component of the ApplicationView with
the System component of the MemorySpaceView.

3. UML Abstraction for associating application components to memory partitions.

Class diagrams are used for defining the memory partition types and for capturing
the UML generalization of the System components.

Composite structure diagrams are used for defining the memory partition

instances.

6.1 Process modelling

Memory partitions are modeled by the MARTE stereotype <<MemoryPartition>>

applied on a UML component (Figure 47).

«memoryPartition:
«Component:s
memoPartition_1

«memoryPartition:
«Components
memoPartition_2

Figure 47 Memory partitions

6.2 Process structure

The executables are defined in a System component included in the view as
instances of the MemoryPartition components previously defined (Figure 48).

<system»
«Component»

System_MemoryPartition_Allocation_Component

structure

memoryPartitionl memoryPartition2

structure structure

memoryPartition4

structure

memoryPartition3
structure

Figure 48 Executables definition

- 44 0f 73 -

UML/MARTE modelling methodology

6.3 Application Allocation structure

In this view, the allocation of the application components to the memory partitions
(executables) is dealt with.

This System component is used in order to allocate the application instances
defined in the ApplicationView to the corresponding memory paritions. This System
component should be specialized by the System component defined in the
ApplicationView. This specialization is modelled by means of a UML generalization
defined in a UML class diagram. Only one System component should be defined within
the Memory Space View package (Figure 49).

«system»
«Component»
Application_stereo_vision

1

«system:»
«Component»
System_MemoryPartition_Allocation_Component

Figure 49 Specialization of the System component of Memory Allocation View

By means of a UML composite structure diagram associated with the System
component, the application instances defined in the System component of the
ApplicationView are mapped onto the memory spaces. The application component
instances are mapped onto memory partition instances by means of UML abstractions
specified by the MARTE stereotype <<allocate>>.

«system»
«Component»
System_MemoryPartition_Allocation_Component
structure

starting [« i | image [rectification |
ELTENIE structure structure structure

E\-‘ % I

5 .
) . At . «abstraction»

*, «abstraction», = i «abstraction» allocates

*, «allocate» | . «absutractlon» «allocate\)l}/ |
i Y | J «allocates —

«abstraction> v 2 memoryPartition2 memoryPartition3
structure
triangle stereoMatching
structure ELCEE
o
=l .
«abstractions ," «abstraction»
«allocate» " «allocate»
memoryPartition4

Figure 50 Memory partition allocation

In Figure 50, the yellow boxes are application components that are mapped onto
memory partitions.
6.3.1 Contraints of Allocation

There is a modelling constraint in terns of application mapping: for each
memory space, only one-application instance with implicit thread associated (section
5.1.2) is allowed.

-450f 73 -

UML/MARTE modelling methodology

6.4 Composite components Allocation

When an instance of a composite component is allocated in a memory partition, it
Is involved that all the internal instances of such composite component are allocated in
that memory partition. The internal parts of a composite component can not be allocated

in different memory partitions.

-46 of 73 -

UML/MARTE modelling methodology

PDM Views

7 HW Resources View

The HwResourceView declares all the HW components required for the
specification of the platform architecture. In the ArchitecturalView, instances of the HW

components declared in the HW Resources view will be used in the capture of the HW
architecture.

The UML elements used in this view are:
1. UML Components for modeling the HW component types
Class diagrams are used for defining the HW components.

The MARTE stereotypes used to specify the HW components that can be captured
in the HwResourcesView are shown below.

UML2 Diagram elements MARTE profiles MARTE stereotypes
HwProcessor
HWRAM
HWROM
HwCache
HwBus
Component HwMedia
HRM HwEndPoint
HwBridge
Hwl_O
HwPLD
HwISA

Table 4 MARTE stereotypes used for refining the HW platform
L] - -

«hwProcessors <hwCaches <hwCaches

<Companents
ARMa

«Components «Components
InstructionCache DataCache

eHAProcessors
caches=[DataCache, InstructionCache] & .
frequency=(400,4Hz) || pepon ySize=(8,KB) memorySize=(8,KB)
Frequency—(250,MHz) Frequency—(250,MHz)

— -
ahwBus» shwRAMs ahwl_O=
«Components =Components =Components
AMBA RAM 1.0
HwELS3 <HIRAN:
wordywidth=(32,bit) frequency=(250,MHz)
frequency={400,MHz) memorySize=(32, M)

Figure 51 HW platform resources

-47 of 73 -

UML/MARTE modelling methodology

7.1 Physical Magnitudes

HW component attributes can be annotated with values, which can be either a-
dimensional or represent a physical magnitude. There are two different ways to annotate
the value of the attribute with its corresponding physical magnitude:

1. (value=valueSpecification, units=physicalMagnitude)

a. (value=200, units=MHz)
b. (value=2, units=mw)

2. (valueSpecification, physicalMagnitude)

a. (200,GB)
b. (25,nJ)

The accepted units for the each attribute and the default physical magnitude are

shown in the following table.

Attribute

Physical magnitude

frequency

GHz
MHz
KHz
Hz

memorySize

B

GB
MB
KB
B

wordWidth

byte

BandWidth

Gb/s
Mb/s
Kb/s
b/s

memoryLatency

us
Ns

power

mw
uw
nwW

-48 of 73 -

UML/MARTE modelling methodology

pwW
energy J

mJ
uJ
nJ
pJ
blockSize word

Table 5 HW attributes and physical units

7.2 HW Processors

HW processors are modelled as components decorated with the
<<HwProcessor>> the MARTE stereotype.

Frequency

The frequency of the processors is captured in the HwProcessor attribute
frequency.

Slots

The HWProcessor may have associated the number of slots when it is directly
connected to a TDM (in this case, the HW processor is assumed to have the network
interface capabilities). This property is modelled as the attribute assignedSlots:
NFP_Integer. Then, in the property “Default Value” the value is annotated.

7.2.1 Cache Processor

Each HW processor could have data and instruction caches memories. Thus, each
HW processor can have associated a set of HwCaches instances. The caches can be
associated to a HwProcessor by means of the attribute caches of the stereotype
HwProcessor (Figure 52). This stereotype attribute selects the UML components that
are characterized by HwCaches.

= Properties 23

=] Kernel

_ Applied stereotypes: |an| | B

Profile = ownedlI5As: HWISA [0.%] =[] i

_ = predictors: HwBranchPredictor [0..#] = []

+ @ caches: HwCache [0..*¥] = [DataCache, InstructionCache]
= ownedMMUs: HWMMU [0..*] =[] v

Figure 52 Associating caches to a HWProcessor

7.2.2 Processor ISA

The HwProcessor can be more specifically defined by an ISA. The MARTE stereotype
<<HWISA>> is applied to a new UML component. This HwISA component is

-49 of 73 -

UML/MARTE modelling methodology

associated with the HwProcessor through the HwProcessor attribute ownedISAs. Two
attributes of the HwISA stereotype are considered in this methodology:

family: NFP_String. Defines the ISA family

type: ISA_Type. Specifies the ISA type.

The Isa_type includes:

>

YV V V V

>

RISC: Reduced Instruction Set Computer.
CISC: Complex Instruction Set Computer.
VLIW: Very Long Instruction Word.
SIMD Single Instruction Multiple Data.
Other.

Undef.

In the case of this modeling methodology, the possible values of the family attribute are
DSP, GPU, CortexA9, undef.

7.3 Processor Caches

The cache memories are modelled by the MARTE stereotype HwCache. Table 6
shows the possible values of the type and level attribute of the HwCache stereotype that
determines the type of cache. Figure 53 shows an example of caches components.

type = instruction

HwCache attribute Type of Cache
level = 1
& Data cache
type = data
level =1
& Instruction Cache

type = unified

level 1=1

& Unified Cache for caches of
level more that one

Table 6 HwCache attribute values

-50of 73 -

UML/MARTE modelling methodology

chwyCaches shwCaches «hwCache»
«Cormponents «Cormponents wiZampanents
dataCache instrucCache cachel evel2
«HwCache» sHwCackes <<HwCachg»
type=data type=instruction type=unified
level=1 level=1 level=2

Figure 53 Cache components

Additionally, the caches can be characterized with three additional attributes: the
block size (specifies the width of a cache block), the associativity and the number of
sets. These caches attributes can be specified in the attribute structure of the MARTE
stereotype HwCache. The attribute structure is typed as CacheStructure (Table 7).

HwCache attribute Attributes
structure blockSize

associativity

Table 7 Definition of the structure attribute

The specification of these attributes has to be annotated as a string. The attributes
annotation is shown in Figure 54. The attributes are identified as blockSize and
associtivity. Both data annotations are specified in parentheses and separated by comma.
The unit of the blockSize is the WORD (Figure 54). The word size associated to the
cache memory is annotated in a UML property named wordSize of the HwCache
component. This specifed by the MARTE stereotype <<Nfp>> and typed by the
MARTE NFP data type NFP_DataSize (Figure 55). Then, in the “Default Value” the
value is annotated. When this attribute is not present, the default value annotated is 4
Bytes.

= Properties &3

¥]1 DataCache

_ Applied stereotypes: s || %

Profile + @ type: CacheType [0..1] = data
_ + @ structure: CacheStructure [0..1] = blocksize=(32,word);associativity=8
+ & repl_Policy: Repl_Policy [0..1] = LRU

L= wrritaDalieu WiritaDalicg TN 11 — wiritaD -l

Figure 54 Specification of the attributtes blockSize and associativity
The size of the caches is defined in the attribute memorysSize.

The type of write policy is specified in the attribute writePolicy. It can be
writeBack or writeThrough.

In the case the cache is typed as instruction (attribute type), another attribute can
be captured; the size of the address. This property is annotated in the HwCache attribute
addressSize.

-510f 73 -

UML/MARTE modelling methodology

«hwCachex»
«Component»
DataCache
«HwCachex»
structure=blocksize=(32,Word)
associativity=8
writePolicy=writeBack
memorySize=(16, KB)
type=data

«nfp» wordSize : NFP_DataSize = (8,byte)

Figure 55 Cache specification

7.4 Bus

The buses are modelled by the MARTE stereotype <<HwBus>>. Different
properties characterize a bus.

Word width

The property word width specifies the word width per transaction expressed in
bits or bytes and it is captured in the HwBus attribute wordWidth. It is expressed in
bytes. The default value of wordWidth is 8 bytes

Band width

The property bandwidth specifies the number of transactions per second. It is
captured in the HwBus attribute bandwidth. It is expressed in bits/s, Kbits/s, Mbits/s...
The default value of the bandWidth is 1 Mbit/s.

Burts size

The property burst size denotes the size ... It is modelled by adding an UML
property to the HwBus component named it “burstSize”. The attribute is specified by
the MARTE stereotype <<NFP>>. This attribute is typed by the MARTE NFP data type
NFP_DataSize. Then, in the “Default Value” property the value is annotated. When this
attribute is not present, the default value annotated is the wordWidth attribute value.

7.4.1 TDMA bus

For charactering a bus TDMA a set of specific properties should be captured.
These properties are captured as UML attributes of a HwBus component. These
attributes are:

= numberSlots: NFP_Integer
timeSlot: NFP_Duration
capacitySlot: NFP_DataSize
payloadSlot : NFP_DataSize
payloadRateSlot : NFP_DataTxRate
timeCycle: NFP_Duration

-520f 73 -

UML/MARTE modelling methodology

«hwBuss»
«Components
TDMA

+ numberSlots : NFP_Integer
+ timesSlot : NFP_Duration
+ capacitySlot : NFP_DataSize
+ payloadslot : NFP_DataSize
+ payloadRateSlot : NFP_DataTxRate
+ timeCycle : NFP_Duration

Figure 56 TDM bus component properties

Then, in the property “Default Value” of each of the previous attibutes, the
individual value is annotated.

7.5 Bridges

In order to connect busses the bridge components should be used. This elements
are modelled by the MARTE stereotype <<HwBridge>>. HwBridges only can connect
HwBus component. The only property considered is the frequency.

7.6 FPGA
The FPGA is modeled by the MARTE stereotype <<HWPLD>>.

7.7 Memories

The memories are modelled by the MARTE stereotypes <<HWRAM>>,
<<HWROM>> or <<HwMemory>> according to the type of memory to considerer.

Memory size
The size of the memory is annotated in the attribute memorySize.

Memory latency

The memory latency attribute is annotated in the attribute timmings. In this
attribute, there is annotated memoryLatency=(value, unit).

7.8 Network
A network is modelled by using the MARTE stereotype HwMedia.

7.9 Network Interfaces

The network interfaces are modelled by the MARTE stereotype
<<HwEnNdPoint>>. Each HwEndPoint component should have an attribute called
IPAddress. In the attribute, Default Value specifies the IP address by using an UML
Literal String, in order to denote the IP address to enable the TCP/IP communication.
This IPAddress should be different for ach HwEndPoint component. As a modelling

-530f 73 -

UML/MARTE modelling methodology

constraint, only one instance of HwEndPoint component can be included in an
execution node.

7.10 I/O Components

The MARTE stereotype <<Hwl_O>> models the HW component used as 1/O
system device.

7.11HW components’ Functional Modes

The HW components can have different associated functional modes that specify
different characteristics that define the HW component’s behaviour according to a set of
configuration parameters. These functional modes are defined by attributes: frequency,
voltage, dynamic power and average leakage. In addition, the transitions among the
functional modes are characterized as well. The transitions among modes are
characterized by the time consumption in the mode transition and the power
consumption in the mode transition.

In order to model these functional modes, the corresponding HW component
should have a UML state machine. In a UML state diagram, the HW component modes
and the mode transitions are captured. The HW component modes are represented as
UML states specified by the MARTE stereotype <<Mode>>. The mode transitions are
represented as UML transitions specified by the MARTE stereotype
<<ModeTransition>>.

For characterizing the functional attributes previously mentioned, some modelling
elements have been used. The first one is taken from the paper', specifically the
stereotype <<HwPowerState>>, in order to specify the frequency of the HW component
in this mode. The attribute Pstatic of the HwPowerState enables to capture the power
consumption in idle in this mode. The dynamic power of the mode is defined by the
application of the MARTE stereotype <<ResourceUsage>>, specifying the attribute
powerPeak. In order to define the last two attributes of a functional mode, voltage and
average leakage, two UML comments should be associated with the corresponding
UML state. There, both values are annotated. All the attribute values should be
annotated as the MARTE specifies in order to define the non-functional properties
(value, unit).

In order to characterize the mode transitions, the power and the time consumption
have to be defined. The time consumption is defined in the attribute setupTime owned
by the stereotype HwPowerStateTransition defined in the previously mentioned paper.
The power consumption is specified by the stereotype <<ResourceUsage>>.

1 T. Arpinen, E. Salminen, T.D. Hamaldinen, M. Hanniikdinen. "MARTE profile extension for modeling dynamic power
management of embedded systems”. JSA, April 2012, Pages 209-219.

-54 of 73 -

UML/MARTE modelling methodology

StateMachinel

«modeTransition, hwPowerStateTransition, resourceUsage»
{setupTime=(0.1,ms)powerPeak=[(5,mwW)]}

«mode, hwPowerState, resourceUsage»|
Statel

«mode, hwPowerstate»
State0
«HwPowerState»
frequency=(300,MHz)

Transition0 «Resourcelsages»
«modeTransition, hwPowerStateTransition, resourceUsage» powerPeak=[(120,mw)]
{setupTime=(0.1,ms)powerPeak=[(5,mW)]} «HwPowerState»
frequency=(300,MHz)

Transitionl

- @ State0
- t, ownedComment (2)
= <Comment> voltage=(1.2,V)
= <Comment> averagelLeakage=(100,mW)
+ Ls container (1)
- @ Statel
- t, ownedComment (2)
= <Comment> averagelLeakage=(100,mW)...
= <Comment> voltage=(1.2,V)

Figure 57 HwProcessor mode specification

7.12 Power Consumption

The HW components have associated static power consumption. This value is
modelled by applying the MARTE stereotype <<HwComponent>> to the HW
component and annotating the value in the attribute staticConsumption.

7.13 Energy Consumption

There are set of properties that can be associated to specific HW resources in
order to determine the energy consumption of some actions implemented by these HW
resources.

Processors

The processors have associated the energy consumed by cycle. The energy
consumption per cycle is captured by adding a UML attribute named cycle typed by a
NFP_Energy data type. The attribute is specified by the MARTE stereotype <<NFP>>.
Then, in the property “Default Value” the value is annotated.

Caches

The caches have associated two energy consumptions; the consumption of a hit
and the consumption of a miss. The hit energy consumption is captured by adding a
UML attribute named hit typed by a NFP_Energy data type. The attribute is specified
by the MARTE stereotype <<NFP>>. Then, in the property “Default Value” the value
IS annotated.

The miss consumption is captured by adding a UML attribute named miss
repeating afore explained process for specifying the value.
Buses

The buses have associated the energy consumed in order to access to them. The
bus access energy consumption is captured by adding a UML attribute named access

-550f 73 -

UML/MARTE modelling methodology

typed by a NFP_Energy data type. The attribute is specified by the MARTE stereotype
<<NFP>>. Then, in the property “Default Value” the value is annotated.

Memories

The memories have associated the energy consumed in order to access to them.
The memory access energy consumption is captured by adding a UML attribute named
access typed by a NFP_Energy data type. The attribute is specified by the MARTE
stereotype <<NFP>>. Then, in the property “Default Value” the value is annotated.

8 SW Platform View

The SWPlatformView defines the operating systems that are in the HW/SW
platform. The operating systems are modelled by a UML component specified by the
stereotype <<OS>>. The attributes associated with this stereotype are:

<<QS>>

type:String [1]
scheduler: Scheduler[*]

drivers: DeviceBroker [*]

interProcessCommunication:
InterProcessCommunicationMechanism [1]

Figure 58 OS stereotype attributes (modificar)

The type of the OS is defined in the type attribute (linux, windows, etc.).

The attribute scheduler defines the schedulers associated to the OS. The
schedulers are modelled by the MARTE stereotype <<Scheduler>>. In this component,
the scheduling policy can be annotated. The scheduling policy is captured in the
attributes schedPolicy and otherSchedPolicy.

The attribute schedPolicy is an enumeration. The possible values considered in
this methodology are “EarliestDeadlineFirst”, “FixedPriority”, “RoundRobin”...
“Other”. In the case the value is “Other”, the scheduling policy is annotated in the
attribute otherSchedPolicy.

The driver attribute of the stereotype OS enables association of DeviceBrokers
with the OS component

The interProcessCommunication attribute defines the OS services that
automatically create the communication infrastructure in order to communicate
processes in the OS. Thus, code will be created ad-hoc depending on which
mechanism is specified for each OS instance. Five types of inter process

-56 of 73 -

UML/MARTE modelling methodology

communication mechanism are currently supported for automatic code generation.
These types are:

e FIFO channels

e Sockets

e message queues
e shared memories
o files

Using this option, designers can easily explore the performance impact that
each one has on the final implementation and select the most suitable ones for each

system.

«0S»
«Component»
Amstrong
«0Sx»
type=Linux

drivers=[cmemk, dsplinkk, Ipm_omap3530]
interProcessCommunication=FIFO

Figure 59 OS component

8.1 Drivers

The OS components can have an associated set of drivers to provide access to
peripherals or to manage specific processing HW resources of the platform. Drivers are
modelled by the MARTE stereotype <<DeviceBroker>> applied on an UML

component.
A DeviceBroker driver can have associated properties that enable well-defined driver

specification:
e Repository: denotes the address where the driver can be downloaded.
e Parameter: denotes configuration information for the driver.
e Device: is the file for the control of the HW resource

«deviceBrokers
«Component»
cmemk
parameters = phys_start=0x8C000000 phys_end=0xB8E000000 pools=5x16,3x4194304,4x2097152
device = cmem

«deviceBroker» «deviceBroker»
«Component» «Component»
dsplinkk Ipm_omap3530
+ device = dsplink device = Ipmo0

Figure 60 Driver for DSP management

-570f 73 -

UML/MARTE modelling methodology

8.1.1 Repository

The “repository” property denotes the url direction of the repository where the
driver can be downloaded in order to be installed in an automatic way. This property is
captured in a UML property included in the DeviceBroker component. The name of this
UML property should be “repository”. The address is annotated in the attribute “Default
Value” of the UML property, by using a UML Literal String attached to the “Default
Value” attribute.

8.1.2 Parameters

The “parameters” property denotes the set of paramaters required for a correct
configuration of a driver. This property is captured in a UML property included in the
DeviceBroker component. The name of this UMI property should be “parameters”.
Then, the set of parameters are annotated in an attribute “Default Value” of the UML
property, a UML Literal String attached to the “Default Value” attribute.

EQlkBes ~
= B2 model «deviceBroker»
+ B2 <Package Import> Ul «Component»
+ B2 Data Model cm:mk
. . + parameters : <...
#/ B3 Functional View + device : <Undef...
+ B2 Application View

+ B3 CommunicationView
+ B3 MemoAlloc
+/ B3 HWPlatform
~ B3 SWPlatform
=] Amstrong I Properties 5% o
= £J cmemk
- 1, ownedAttribute |

By drivers £

& parameters

+ O parameters

uML :
¥ @ device _ Type <Undefined> el |z
= =] dsplinkk — . - - - -
I o-fault value = ="phys_start=0x8C000000 phys_end=0xBE000000 pools=5x16,3x4194304,4x2097152" [(G2 (8]
— 1, ownedAttribute | “Advanced EERLA R

Figure 61 “Parameter” driver property

8.1.3 Device

The “device” property denotes the device property required for a correct
configuration of a driver. This property is captured in a UML property included in the
DeviceBroker component. The name of this UMI property should be “device”. Then, the
set of parameters are annotated in an attribute “Default Value” of the UML property, a
UML Literal String attached to the “Default Value” attribute.

= B model «deviceBroker»

= + %7 <Package Import> Ul «Component»
(=) + B Data Model cmemk

+ B2 Functional View I Ez‘rlai:::e.tirs“;f..

+ B3 Application View)

+ B3 CommunicationView

+ E3 MemoAlloc

+ B2 HwPlatform

- B2 SWPlatform ™8 drivers
&7 Amstrong [Properties &
= €] cmemk)
= t, ownedAttribute { = device
+ O parameters ML Is unique @ true false Visibility
o E— -
Type <Undefined=> e Multiplicit
= &] dsplinkk S Fhey
- t, ownedAttribute { _ Default value & ="cmem" &8 2 38 Aggregation

+ = device

Figure 62 “Device” driver property.

-58 of 73 -

UML/MARTE modelling methodology

PSM Views

9 Architectural View

The Architectural view captures the platform specific model (PSM) as a mapping
of the PIM onto the platform. Moreover, the architectural view also describes the
platform architecture. The platform specific model is captured as a component
containing the following items:

e SW platform architecture (e.g. OS instances).

e HW platform architecture, which includes
o Instances of HW resources (processors, memories, buses, network, etc.).
o Interconnections amon those HW resources

e Association of the HW resources to OS.

e Mapping of the PIM to the platform

9.1 Modelling of the HW/SW platform architecture

The Architectural View contains the System component, i.e. a component decorated
by the <<System>> stereotype. The System component of the architectural view
represents the platform specific model. Only one System component should be present
in the Architectural View package. A composite structure diagram, as the one shown in
Figure 63, is associated the system component, and used to capture the HW/SW
architecture of the platform.

+ liruz: 05
structure

«abskractions
v, allacates
Al
N
\
N
+ micro: ARMS + microZ: ARMI + micro3: ARMI
structure structure structure

wabstrackions
«allocates -
P .

»" =abstractions
«allocates

.EE____

]

+ ramz; RAM 5 bus: amen J
structure structure +raml: RAM
sthucture

Figure 63 HW & SW platform architectures

The HW architecture is captured by instancing HW components declared in the
HW Resources View and interconnecting them through UML port-to-port connections.
The SW platform architecture is composed of instances of the OS components included
in the SWPlatformView.

-59 0of 73 -

UML/MARTE modelling methodology

9.2 Platform Mapping: SW instances onto HW instances

The association of the OS instances with HW resources instances is modelled by
means of UML abstractions decorated with the MARTE <<allocate>> stereotype (see
Figure 63).

9.3 PIMto Platform Mapping

In the simplest case, application component instances can be mapped to the platform
resources (RTOS instances or processing elements). Moreover, the methodology also
enables the mapping of other PIM elements, namely schedulable resources (threads) and
memory spaces onto the platform resources.

In order to enable the mapping of PIM application component instances onto the
SW/HW platform, the System component of the architectural view (representing the
PSM) view has to be defined as a specialization of a System component defined in the
PIM view which contains the PIM elements to be mapped. Therefore, if component
application instances are going to be mapped, the PIM System component of the
ApplicationView can be extended. However, if memory spaces are going to be mapped,
then the System component of the MemorySpaceView have to appear as the parent port.
The specialization relation is captured in a UML class diagram, by mean of a UML
generalization.

«Component» @
quadcopter_ memspace

]

«system:s m
«Components
quadcopter_system

Figure 64 The System component of the Architectural View reflects a PSM, which
specializes and increments the PIM model.

Figure 64 gives an example of inheriting the system component of the memory space
view. It allows to refer and map memory partitions (Figure 65). Notice that, since both,
the system component of the memory space view, and the system component of the
concurrency view (in case they appear) inherit the system component of the application
view, in this case, the application components can be also referenced and mapped
(Figure 65).

-60 of 73 -

UML/MARTE modelling methodology

~Components H|
quadcopter_system
Srucure

|+ Feedbexe : mem_partition | [+ streamexe: mem_partition
structure structure

. g +mb1.exe : mem_partition +mba2.exe : mem_partition
) S structure structure
i;l\llixate» .
n - whllocaten +object_tracking: mem_partition
 gnbstene e porion] %% F
structure ,
\ ‘

K -

' '
' '
' '
' '
' '
whllocate apllocatey
i i
' '
' '

\ s
wallocated, ! _ dallocates
Wy g s
+rbos1: ELinux
structure
fahstrachon‘ @gbstractions

«all ‘\ «wallocaten

[+ cpu1. mcmm ||+qx|2 ARM_Cortex 0 |
Structure

f

Figure 65 Mapping memory partitions onto the HW/SW platform.

~Companents [
quadcopter_system
‘structure
[#mon_dbg 2:Monito.. | [+ objdetec: ObjectDetection|
é | é‘ | |+ﬁ¢t_a|g.rm_ +mdg M.I +Ira|t.||Kl Baro... ldl(l e
: , A - ;L | | | =
.
+ gimbetr : GimbalCon... +cam_|0: CameralO AR m
structure \ [strucure s, | sawe | umtlo MotorlO +am-_||c| Acceler...
Y Y wabstractions S = . i
ﬂabs”aettlu‘n* ’::LDS‘EETEE:OI]‘ ‘H) II bty ti ‘
wallocates . uabstractions + wabstrac |nn»'
eabstractmhn\ vallotatg» «abstractic\:n»(wallocates ‘,amachm?v‘:j[lgtt‘gﬁ*«auocatei)
wallocaten s " / allocaten s oo 1 wallocaten ., ‘uabstractiops
\‘ A , Nocates tr’a_ctlcn- \«allonaﬂep
walipcater’, | wabstractl
Y S wallocaten
+rtos1: ELinux woh
structure gy
'

7 watstractions + bram2 : Xilinx_SharedRAM
waﬁl;sﬁractmn .‘ aallocates

[+ cpu1 mu(nnum][+ cpuz: um(mum|
Strudture

/=

+ axil : 2

‘structure

1

Figure 66 Mapping application component instances onto the HW/SW platform.
The destination of the mapping can be either a RTOS or a processing element.

There are a number of implicit assumptions and mapping rules. In general, a memory
partition can be allocated to either one RTOS instance. It can be also allocated to a
processing element. In such a case, there are two possibilities. If an OS instance has

-610f 73 -

UML/MARTE modelling methodology

been allocated to such a processing element instance, then the mapping is equivalent
(and thus a synthetic capture) to a mapping to that RTOS instance (with a specific
affinity). However, if no OS instance is associated, it means a bare metal application.

Whe application component instances and schedulable resources are allocated to RTOS
and processing elements similar rules apply. The mapping of the elements to different
processing elements not associated to the same OS instance necessarily implies different
memory partitions. A schedulable resource can be mapped to the several processing
elements (meaning affinity in the case they are under the same RTOS).

-620f 73 -

UML/MARTE modelling methodology

10 Verification View

The Verification View defines the structure of the system environment. The
environment has to be thoroughly defined in order to enable the execution of the
performance estimation tools during the design process with appropriate inputs.

The environment structure consists of environment components that interact with
the system. Additionally, these environment components have the associated functional
elements that define their functionality.

For modeling the environment, a set of stereotypes of the UML standard profile
UTP has been selected.

10.1 Environment components

The environment components represent the devices that interact with the System.
The environment components are modelled as UML components. This set of UML
components is specified by means of stereotypes included in the standard UML Testing
Profile (UTP). The components that compose the system environment are defined in a
UML class diagram. These components are specified by the UTP stereotype
<<TestComponent>> (Figure 67).

«testComponent» @
«Component»
Camera

Figure 67 Environment component

10.2 Environment component Functionality

Each environment component has an associated specific functionality. This
functionality is modelled as UML components specified by the MARTE stereotype
<<RtUnit>> and the UTP stereotype <<TestComponent>> (Figure 68). The
environment application components should be included in the ApplicationView like the
rest of the application components of the system.

«rtunit, testComponent» «rtunit, testComponent» «rtunit, testComponent»
«Component» «Component» «Component»
Capturelmage DisconnectDevice ConnectDevice

Figure 68 Environment application components

All these RtUnit-TestComponent components can have the same associated
modeling elements (threads, file folder, files) as the rest of the application components.

These RtUnit-TestComponent application components have associated C files.
These C files are file artifacts defined in the Functional View. The files should be

-630f 73 -

UML/MARTE modelling methodology

specified by the UML standard stereotype <<File>> and the stereotype
<<ApplicationFile>>. The files used for defining the functionality of the environment
should be typed as environment=true. The assignation of the file artifacts is done
through a UML abstraction specified by the MARTE stereotype <<allocated>> (Figure
69).

«rtUnit, testComponents»
«Component» «abstraction»

DisconnectDevice «allocated» P
R . .
disconnect_device

«abstraction»

«allocated» -
«rtUnit, testComponent» «file»
«Component: [connect_device
ConnectDevice «abstraction»

«allocated»
.

«file»

connection_support

«rtUnit, testComponent»
«Component» «abstraction»

Capturelmage «allocated» «file»
[S--mmmes capture

Figure 69 Environment Application components with associated Files

10.3 Environment component structure

Each environment TestComponent component has internal parts that are the
environment application components. The internal functional structure of the
environment TestComponent component is captured by using intances of RtUnit-
TestComponent application components (Figure 70) in a Composite structure diagram
associated with the environment TestComponent component.

«testComponent»
«Component»
Camera
structure

connectDevice
structure

disConnectDevice
structure

capturelmage
structure

Figure 70 Application instances of an environment component

10.4Environment component structure: ports

The communication is established through ports. The ports specify the interfaces
required/provided by the components for the communication. The ports are specified by
the MARTE stereotype, being defined as provided or required, where an interface is
associated.

The ports that have been specifed by the ClientServerPort stereotype are those of
the environment component (TestComponent component), as can be seen in Figure 71
(Camera TestComponent). These TestComponent ports are connected to the internal
application instance ports by using UML connectors (Figure 71). These application

-64 of 73 -

UML/MARTE modelling methodology

instance ports have to be named similarly to the TestComponent port that they are
connected to (Figure 71).

«testComponents
«Component»
Camera
structure

Devi «clientServerPort»
L
«clientServerPort»
disConnectDevice " disD port_sys_disDev
port_sys disDev i
structure L]
capturelmage «clientServerPort»

Figure 71 Environment Application components

10.5 Environment structure

The environment structure is composed of insances of environment components
connected to the System.

The environment structure is modelled in a UML component specifed by the UTP
stereotype <<TestContext>>. The environment structure is modelled in a UML
composite structure diagram associated with this TestContext component. This
composite structure diagram contains instances of TestComponents and a property typed
by a System component; specifically, the System component defined in the Application
View since the port that interacts with the environment is defined in this System
component included in this model view; this System property should be specified by the
UTP stereotype SUT (Sytem Under Test).

«testContext»
«Component»
EnvironmentStructure
structure

camera «sUT»
structure + system : Image_Processing_Application_System
«clientServerPort» «channel»] «clientServerPort» structure

" channel.
«clientServerPort» “ i H «;I:I)intdsiggee\rpom
port_sys_disDev [] -
«channel» «clientServerPort»
«clientServerPort» . . port_caplmage

port_sys_caplmage

Figure 72 Definition of the environment structure

Then, in order to define the semantics of channels among the TestComponents and
the System, UML connectors should be specified by the stereotype Channel, specifying
the type of communication media defined in the CommunicationView.

10.6 Memory allocation

The Environment elements have to be allocated to memory spaces. The
TestContext component has to be associated with the System of the MemorySpaceView.
This System component should be specialized by the TestContext component defined in
the VerificationView. This specialization is modelled by means of a UML generalization
defined in a UML class diagram (Figure 73).

-650f 73 -

UML/MARTE modelling methodology

«system» [r:] «testContext» 1]
«Component» «Component»
Image_Processing_Application_System EnvironmentStructure

AN

«systems
«Component»
System_Memory_Partition

Figure 73 Generalization of Environment structure with the System component of the
MemorySpaceView

Then, the allocation on memory spaces of the environment component (instances
of TestComponent components) can be done (Figure 74).

«Components»]
System_Memory_Partition
structure

camera
structure
'

r «abstraction»

«allocate»

;
memoryPartition4

Figure 74 Allocation of environment component to the memory partitions

This view is not mandatory. The reason is that the methodology considers an
alternative solution. As described above, different files can be associated with the
system. Using this feature, systems with minimal environments can be modelled

directly indicating the source file with the environment code instead of creating a
complete specific view.

- 66 of 73 -

UML/MARTE modelling methodology

11 Annex |I: Methodology Stereotypes

systemMetrics:Boolean[1]

Stereotype Attributes Profile
DataView ESSYN
FunctionalView ESSYN
ApplicationView ESSYN
MemorySpaceView ESSYN
HWResourcesView ESSYN
SwResourcesView ESSYN
ArchitecturalView ESSYN
VerificationView ESSYN
Tupletype MARTE
CollectionType collectionAttrib:property [0..1] MARTE
DataSpecification size:NFP_Data [1] ESSYN
pointer:Boolean [1]
dataSpecifier: Specifier [1]
dataQualifier: Qualifier [1]
complexDataType : String [0..1]
File Standard UML
ApplicationFile parallelized: Boolean [1] ESSYN
highLevel: Boolean[1]
implementation: String [0..1]
notModifiable: Boolean [1]
environment: Boolean [1]

SystemFile systemConfiguration: Boolean [1] ESSYN

-670f 73 -

UML/MARTE modelling methodology

environment: Boolean [1]
RTL: Boolean [1]
TLM: Boolean [1]

FilesFolder parallelized: Boolean [1] ESSYN
highLevel: Boolean[1]
implementation: String [0..1]
notModifiable: Boolean [1]
environment: Boolean [1]
ClientServerSpecification MARTE
Pointer ESSYN
CommunicationMedia MARTE
StorageResource result : NFP_Integer[0..1] MARTE
ChannelTypeSpecification | blockingFunctionDispatching:Boolean [1] ESSYN
blockingFunctionReturn:Boolean [1]
priority : integer [0..1]
timeOut:NFP_Duration [0..1]
ordering: Boolean [1]
NotificationResource MARTE
SharedDataComResource | identifierElements: TypedElement= [0..*] MARTE
RtUnit isMain : Boolean [1] MARTE
main : Operation [0..*]
srPoolSize: Integer [0..1]
srPoolPolicy : PoolMgtPolicyKind [1]
create UML standard
Allocated MARTE
ClientServerPort kind : ClientServerKind [1] MARTE

-68 of 73 -

UML/MARTE modelling methodology

provinterface : Interface [0..1]
reginterface : Interface [0..1]
Channel commType: CommunicationMedia [1] ESSYN
System ESSYN
MemoryPartition MARTE
Allocate MARTE
HwProcessor ownedISA : HWISA [0...1] MARTE
caches : HwCaches[*]
HWRAM MARTE
HWROM MARTE
HwCache type : CacheType [1] MARTE
level: NFP_Natural [0..1]
HWDMA MARTE
HwBus MARTE
HwMedia MARTE
HwEndPoint MARTE
HwBridge MARTE
Hwl_O MARTE
HwWPLD MARTE
HWISA family: NFP_String [0..1] MARTE
type: ISA_Type [1]
Mode MARTE
HwPowerState frequency : NFP_Frequency [0..1] MARTE

-69 of 73 -

UML/MARTE modelling methodology

Pstatic: NFP_Power [0..1]
ModeTransition MARTE
HwPowerState Transition setUp : NFP_Duration [0..1] MARTE
ResourceUsage powerPeak : NFP_Power [0..1] MARTE
oS type:String [1] ESSYN
scheduler: Scheduler[*]
drivers: DeviceBroker [*]
interProcessCommunication:
InterProcessCommunicationMechanism [1]
DeviceBroker MARTE
TestComponent UTP
TestContext UTP
SUT UTP
Reference ESSYN
Qualifier qualifier:Qualifier [1] ESSYN
Table 8 List of Stereotyes and attributes used in this modelling methodology.
12 Annexo Il: Methodology Enumerations
Enumeration Values Profile

-700of 73 -

UML/MARTE modelling methodology

Specifier

None

Char

signed char
unsigned char
short

short int

signed short
signed short int
unsigned short
unsigned short int
int

signed int
unsigned

unsigned int

long

long int

signed long

signed long int
unsigned long
unsigned long int
long long

long long int
signed long long
signed long long int
unsigned long long
unsigned long long int
float

double

long double

void

ESSYN

Qualifier

None

ESSYN

- 710f73-

UML/MARTE modelling methodology

Const
Volatile
register

PollMgtPolicyKind infiniteWait MARTE
timedWait
dynamic
exception
other

ClientServerKind proreq MARTE
provided
required

CacheType data MARTE
instruction
unified

ISA_Type RISC MARTE
CIsC
VLIW
SIMD
Other
Undef

CommunicationEngineKind undef ESSYN
default
MCAPI

OPenMP

OpenStream

TCP/IP

CommunicationOSServiceKind undef ESSYN
FIFO
Socket
messgeQueue
SharedMemory
File

InterProcessCommunicationMechanism FIFO ESSYN

- 720f 73 -

UML/MARTE modelling methodology

Socket
MessageQueue
SharedMemory

File

-730f 73 -

