

UML/MARTE

Methodology for

Heterogeneous System

design

May, 2016

Microelectronics Engineering Group

TEISA Dpt. , University of Cantabria

Authors: P. Peñil

Revisions : F. Herrera

Author Date Description

FeHe 26/05/2015 Polishing of the Architectural View section

FeHe 28/05/2015 Polishing on the Application View section including

some restructuring

FeHe 25/06/2015 Polishing of section 5.3

FeHe 15/05/2016 Polishing of section 5.1

- 4 of 73 -

Index:

1 MODEL VIEW SPECIFICATION ... 11

PIM VIEWS .. 12

2 DATA VIEW ... 12

2.1 Enumeration Data type .. 12

2.2 Primitive Data type ... 12

2.3 Derived Data type ... 13
2.3.1 Structure Data type ... 13
2.3.2 Array Data type.. 13

2.4 Specifying data types .. 14

2.5 Generalization of DataTypes ... 16
2.5.1 Data Type Generalization for Concurrency Exploration ... 16

3 FUNCTIONAL VIEW .. 18

3.1 Files .. 18

3.2 File specification ... 19

3.3 Interfaces ... 19
3.3.1 Interface Services .. 20
3.3.2 Interface Inheritance ... 21

3.4 Libraries .. 23

3.5 Auxiliary Files ... 23

4 COMMUNICATION VIEW .. 25

4.1 Channel type specification ... 25
4.1.1 Storing Communication Mechanism ... 25
4.1.2 Communication semantics associated with a client application 25

4.2 Synchronization Mechanisms .. 27

4.3 Shared Variable .. 28

5 APPLICATION VIEW ... 29

5.1 Active Components ... 30
5.1.1 Application Component Attributes .. 30
5.1.2 Main function of the Application Component ... 31

- 5 of 73 -

5.1.3 Association of Files with Application Components .. 31
5.1.4 Association of File Folders with Components .. 32
5.1.5 The main application component .. 32
5.1.6 Ports .. 33
5.1.7 Connectors .. 33

5.2 Pasive Components ... 35

5.3 Composite Components ... 35

5.4 Application Architecture.. 36
5.4.1 System ports: I/O communication ... 37
5.4.2 Periodic Application Instances ... 37
5.4.3 System Files ... 38

5.5 Libraries .. 38

5.6 Files Folders .. 39

5.7 Modelling Variables ... 39

5.8 Modeling Variable Specification ... 40
5.8.1 System Components .. 41
5.8.2 Language ... 42
5.8.3 Path ... 42

5.9 Association of source code to application components .. 42

5.10 Concatenation of paths ... 42

6 MEMORY SPACE VIEW ... 44

6.1 Process modelling ... 44

6.2 Process structure... 44

6.3 Application Allocation structure ... 45
6.3.1 Contraints of Allocation ... 45

6.4 Composite components Allocation .. 46

PDM VIEWS .. 47

7 HW RESOURCES VIEW ... 47

7.1 Physical Magnitudes ... 48

7.2 HW Processors .. 49
7.2.1 Cache Processor .. 49
7.2.2 Processor ISA ... 49

7.3 Processor Caches .. 50

7.4 Bus .. 52

- 6 of 73 -

7.4.1 TDMA bus .. 52

7.5 Bridges ... 53

7.6 FPGA ... 53

7.7 Memories ... 53

7.8 Network ... 53

7.9 Network Interfaces ... 53

7.10 I/O Components .. 54

7.11 HW components’ Functional Modes ... 54

7.12 Power Consumption ... 55

7.13 Energy Consumption .. 55

8 SW PLATFORM VIEW .. 56

8.1 Drivers ... 57
8.1.1 Repository ... 58
8.1.2 Parameters .. 58
8.1.3 Device .. 58

PSM VIEWS... 59

9 ARCHITECTURAL VIEW .. 59

9.1 Modelling of the HW/SW platform architecture ... 59

9.2 Platform Mapping: SW instances onto HW instances ... 60

9.3 PIM to Platform Mapping ... 60

10 VERIFICATION VIEW .. 63

10.1 Environment components .. 63

10.2 Environment component Functionality .. 63

10.3 Environment component structure ... 64

10.4 Environment component structure: ports .. 64

10.5 Environment structure ... 65

10.6 Memory allocation .. 65

11 ANNEX I: METHODOLOGY STEREOTYPES 67

- 7 of 73 -

12 ANNEXO II: METHODOLOGY ENUMERATIONS 70

Index of Tables:
Table 1 Data Specifier Values 15

Table 2 Data qualifier values 16

Table 3 Communication semantics to be implemented 27

Table 4 MARTE stereotypes used for refining the HW platform 47

Table 5 HW attributes and physical units 49

Table 6 HwCache attribute values 50

Table 7 Definition of the structure attribute 51

Table 8 List of Stereotyes and attributes used in this modelling methodology. 70

- 8 of 73 -

Index of Figures:
Figure 1 Model views 11

Figure 2 Enumeration data types 12

Figure 3 Primitive types 12

Figure 4 Structure Datatype 13

Figure 5 Array modelling 13

Figure 6 Array dimension specification by the Shape stereotype 14

Figure 7 Undef dimesion of an array 14

Figure 8 <<DataSpecification>> stereotype attributes 15

Figure 9 Data Generalizations 16

Figure 10 Data Type generalization for Concurrency exploration 17

Figure 11 Files 18

Figure 12 ApplicationFile stereotype attributes 19

Figure 13 Interfaces 20

Figure 14 Array size arguments 21

Figure 15 Interface generalization and operation1 of Interface1 21

Figure 16 Interface Inherence 22

Figure 17 Inheritance between interfaces 23

Figure 18 Libraries 23

Figure 19 Auxiliary FilesFolder packages 24

Figure 20 ChannelTypeSpecification stereotype attributes 25

Figure 21 Examples of Channel types 26

Figure 22 Notification resource 28

Figure 23 Shared variable 28

Figure 24 Application components. 31

Figure 25 Main function of an application component. 31

Figure 26 Association Files-Application components 32

Figure 27 Associations of FileFolders with an Application Component 32

Figure 28 Main application component 32

Figure 29 Channel type attached to the Channel connector 33

Figure 30 Assambly and delegation connectors 34

Figure 31 shared variable used by several application components 35

Figure 32 Composite Component 36

- 9 of 73 -

Figure 33 Application Structure 1 36

Figure 34 Application Structure 2 37

Figure 35 Periodic application instance 38

Figure 36 System component with files associated 38

Figure 37 System component with libraries associated 39

Figure 38 System component with FileFolder package 39

Figure 39 Specification of Variables 40

Figure 40 UML constraint for application component variables 40

Figure 41 Annotation in a UML constraint for variable specification 40

Figure 42 Example of multiple constaints in the same application component 41

Figure 43 Constrains of the “lmac” application component 41

Figure 44 Constraints with different constrained elements 41

Figure 45 Specification of the System’s base path 42

Figure 46 Application components with different types of model variables 43

Figure 47 Memory partitions 44

Figure 48 Executables definition 44

Figure 49 Specialization of the System component of Memory Allocation View 45

Figure 50 Memory partition allocation 45

Figure 51 HW platform resources 47

Figure 52 Associating caches to a HWProcessor 49

Figure 53 Cache components 51

Figure 54 Specification of the attributtes blockSize and associativity 51

Figure 55 Cache specification 52

Figure 56 TDM bus component properties 53

Figure 57 HwProcessor mode specification 55

Figure 58 OS stereotype attributes (modificar) 56

Figure 59 OS component 57

Figure 60 Driver for DSP management 57

Figure 61 “Parameter” driver property 58

Figure 62 “Device” driver property. 58

Figure 63 HW & SW platform architectures 59

Figure 64 The System component of the Architectural View reflects a PSM, which

specializes and increments the PIM model. 60

Figure 65 Mapping memory partitions onto the HW/SW platform. 61

- 10 of 73 -

Figure 66 Mapping application component instances onto the HW/SW platform.

 61

Figure 67 Environment component 63

Figure 68 Environment application components 63

Figure 69 Environment Application components with associated Files 64

Figure 70 Application instances of an environment component 64

Figure 71 Environment Application components 65

Figure 72 Definition of the environment structure 65

Figure 73 Generalization of Environment structure with the System component of

the MemorySpaceView 66

Figure 74 Allocation of environment component to the memory partitions 66

UML/MARTE modelling methodology

- 11 of 73 -

1 Model View specification

The complete model is organized in views. Each of these views captures a specific

aspect of the system to be designed. The views are modeled as UML packages specified

by the corresponding stereotype. The stereotypes are:

<<DataView>>

<<FunctionalView>>

<<CommunicationView>>

<<ApplicationView>>

<<MemorySpaceView>>

<<HwResourceView>>

<<SwPlatformView>>

<<ArchitecturalView>>

<<VerificationView>>

Figure 1 Model views

UML/MARTE modelling methodology

- 12 of 73 -

PIM Views

2 Data View

The data model view focuses on the modelling of the data types that will be

involved in the interface services and application operations. These data types are

included in UML class diagrams.

The data model view focuses on the modelling of the data types that will be

involved in the interface operations. The UML elements that can be used to define the

data types of the system are UML Enumerations (enumerated types), UML Primitive

Types (basic data types such as “unsigned char”, “int”, “long long”, etc.) and UML

Data Types that are used to define new data types

The UML elements that can be used to define the data types of the system are

UML Enumerations (enumerated types), UML Primitive Types and UML Data Types.

2.1 Enumeration Data type

The enumerations are captured as UML Enumeration data types and the different

values of the enumeration are modelled as Enumeration Literals (Figure 2).

Figure 2 Enumeration data types

2.2 Primitive Data type

The UML PrimitiveTypes are used to define basic data types. As can be seen in Figure

3, all these data definitions are classic primitive data types in coding.

Figure 3 Primitive types

UML/MARTE modelling methodology

- 13 of 73 -

2.3 Derived Data type

The UML DataTypes are used to define new kinds of data. UML Data types are used

for modelling non-primitive data types (derived data types), structured data and arrays.

2.3.1 Structure Data type

Structured Data are modelled by using the MARTE stereotype <<TupleType>>. The

Datatype has a set of properties typed by specific data type or primitive type that

represent the fields of the structured data type.

Figure 4 Structure Datatype

When a field of the structure data types is a pointer, an asterisk is annotated in the name

(“newp_support” data type of Figure 4).

2.3.2 Array Data type

Arrays are modelled by using the MARTE stereotype <<CollectionType>>. The

collectionType stereotype is applied to a DataType model element. A property has to be

added to this DataType. The property should be typed by PrimitiveType or another

DataType. Then, in the attribute collectionAttrib of the stereotype CollectionType that

property should be attached (in Figure 5, property “array128i”).

Figure 5 Array modelling

The dimension of the array is annotated in the multiplicity tag, if the array is

unidimensional. If the array is multidimensional, the attribute should be specified by the

UML/MARTE modelling methodology

- 14 of 73 -

MARTE stereotype <<Shape>>.The definition of the dimensions is {dim1, dim2, dim3}

(Figure 5 and Figure 6). In these cases, the definition of the size (in Bytes) of the array

should be annotated as (X,Bytes)x(Y,Bytes)x(Z,Bytes) or by the notation (X*Y*Z,

Bytes) (Figure 5).

Figure 6 Array dimension specification by the Shape stereotype

In some cases, the designer can define the dimensions of an array with no specific

value. Figure 7 shows two cases of how to define an array with no specific value of its

dimensions. In the case of a unidimensional array, the size is defined in the tag

multiplicity as [0…*] of the corresponding property of the Datatype. In the case of

multidimesion arrays (by appliying the stereotype Shape), the corresponding dimension

should be specified by “*”. Figure 7 shows these annotations.

Figure 7 Undef dimesion of an array

2.4 Specifying data types

The methodology includes a stereotype for completely specifying the data types. The

attributes associated with this stereotype are:

<<DataSpecification>>

size:NFP_Data [1]

pointer:Boolean [1]

dataSpecifier: DataSpecifier [1]

UML/MARTE modelling methodology

- 15 of 73 -

dataQualifier: DataQualifier [1]

complexDataType : String [0..1]

Figure 8 <<DataSpecification>> stereotype attributes

The attributes are:

 size: defines the size of the data in its memory representation. The attribute size

is NFP_Data, a MARTE data type that specifies the size of a data. The notation

of this MARTE type consists of two values, the value and the unit. It can be

annotated in two different ways:

o size: NFP_DataSize[1] = (value=8, unit=Byte), where the value is a real

number and the unit might be bit, Byte, KB, MB or GB.

o size: NFP_DataSize[1] = (16,Byte).

 pointer attribute: specifies whether the data is a pointer

 dataSpecifier attribute: denotes the C data specifier

 dataQualifier attribute: denotes the C data qualifier

 complexDataType attribute: can only be used when the possible values of the

dataSpecifier and dataQualifier cannot specify the data type. For instance

complexDataType = const volatile unsigned long int.

The list of values of the DataSpecifier attributes is:

<<Enumeration>>

DataSpecifier

None

Char

signed char

unsigned char

short

short int

signed short

signed short int

unsigned short

unsigned short int

int

signed int

unsigned

unsigned int

long

long int

signed long

signed long int

unsigned long

unsigned long int

long long

long long int

signed long long

signed long long int

unsigned long long

unsigned long long int

float

double

long double

void

Table 1 Data Specifier Values

UML/MARTE modelling methodology

- 16 of 73 -

The list of values of the DataQualifier attributes is:

<<Enumeration>>

 DataQualifier

None

Const

Volatile

register

Table 2 Data qualifier values

2.5 Generalization of DataTypes

The modeling methodology enables the generalization of data types. If the general

element of the UML generalization is a Primitive Type (in Figure 9, the data “ULONG”

and “USHORT”) the specific data is specified by the values of the corresponding

primitive type captured in the attributes of the stereotype DataSpecification (the

attributes dataSpecifier or the complexDataType). If the general element of the UML

generalization is a Data Type (in Figure 9, the data “Byte”) the specific data is specified

by the DataType (in Figure 9 the “QoS” is specified as “BYTE”).

Figure 9 Data Generalizations

2.5.1 Data Type Generalization for Concurrency Exploration

In order to enable the exploration of the concurrency structure of the system, Data type

generalization is required.

Some modelling constraints are applied to these data type generalizations:

 Both data are of an UML Data Type

 The stereotype DataSpecification should apply to both data types

 The attribute complexDataType of the DataSpecification stereotype

of the specific element of the generalization (in Figure 10, the Data

Type DataType_Exploration) should be specifed by the name of the

general element of the UML generalization (in Figure 10, the Data

Type DataType).

 In the attribute size of the DataSpecification stereotype, the new and

different value of the size (in Bytes) of data should be specifed.

UML/MARTE modelling methodology

- 17 of 73 -

Figure 10 Data Type generalization for Concurrency exploration

UML/MARTE modelling methodology

- 18 of 73 -

3 Functional View

This view defines the functionality required/provided by the application components in

order to exchange data for each particular functionality execution. This functionality is

encapsulated in interfaces that are provided/required by the application components. At

the modeling level, the same interface can be provided by different application

components, although at implementation level these interfaces could be different.

Additionally, this view could include the set of files where the functionality

performed by each application component is defined with C/C++ code.

The UML elements used in this view are:

1. UML Interfaces for modeling the application interfaces

2. UML Operations for modeling the interface services

3. UML Parameters for characterizing the interface services

4. UML Artifacts for modeling the files

5. UML comment for annotating deadlines

All these UML elements can be captured in Class diagrams. The next section will

present the elements of the functional view of the proposed example.

3.1 Files

The files that store the implementation source-code of the applications are modeled by

means of the UML element Artifact. These artifacts are specified by the UML standard

stereotype <<File>>. The Artifacts are specified by a name (annotated in the attribute

“name”) and in the attribute “File name” (where the name and the extension of the file

should be included, Figure 11).

Figure 11 Files

UML/MARTE modelling methodology

- 19 of 73 -

3.2 File specification

Each File can be specified in more detailed with additional information. This additional

information is captured in the stereotype <<ApplicationFile>>. The ApplicationFile

stereotype has the following attributes:

6. parallelized: Boolean. The file is specified after the parallelization process.

7. highLevel: Boolean. The file coresponds to a high-level language not directly

compilable (i.e Heptagon from which C can be optained).

8. implementation: String. The file is optimized to be executed in a specific HW

resource: DSP, NEON, GPU, etc. The name annotated should be the same as the

HwISA of the HW processor specified in the HwResourceView used for the

allocation.

9. notModifiable: Boolen. The file cannot be modified.

10. environment: Boolean. The file corresponds to a test bench of the system.

<<ApplicationFile >>

parallelized: Boolean [1]

highLevel: Boolean [1]

implementation: String [0..1]

notModifiable: Boolean [1]

environment: Boolean [1]

Figure 12 ApplicationFile stereotype attributes

3.3 Interfaces

The interfaces capture the characteristics of the services provided/required by an

application component in order to establish data exchange.

All the functions included in the same interfaces should be of the same type

(sequential, guarded or concurrent). The same function can be included in different

interfaces.

The application interfaces are modelled by means of UML interfaces. UML

interfaces should be stereotyped by MARTE <<ClientServerSpecification>>. A

ClientServerSpecification provides a way to define a specialized interface that allows its

nature to be defined in terms of its provided and required operations.

UML/MARTE modelling methodology

- 20 of 73 -

Figure 13 Interfaces

3.3.1 Interface Services

The interface services are modelled as UML operations. The functions can be:

 re-entrant (sequential): no concurrency management mechanism is associated

with the functions and, therefore, concurrency conflicts may occur. It is

modelled by specifying the UML operation as sequential.

 protected (guarded): multiple invocations of the function may occur

simultaneously at one instant but only one is allowed to commence. The others

are blocked until the performance of the currently executing function invocation

is complete. It is modelled by specifying the UML operation as guarded.

 not re-entrant and not protected (concurrent): multiple invocations of a

function may occur simultaneously at one instance and all of them may proceed

concurrently. It is modelled by specifying the UML operation as concurrent.

Service Arguments

The functions have arguments. These arguments are modelled as UML parameters.

These parameters ca be typed by the Data types defined in the Data Model. The UML

parameters can be in, inout and return. The order of the arguments in a function

prototype has to be specified. For that purpose, the name of the UML arguments that

model the function arguments should be defined as order:nameArgument where the

value order defines the order of the argument in the function prototype.

Pointer

The function arguments can be modelled as pointers. By appliying the stereotype

<<Pointer>>, the parameter is defined as a pointer.

Reference

The function arguments can be modelled as references by appliying the stereotype

<<Reference>>.

Qualifier

The function arguments can be specifed by a qualifier by appliying the stereotype

<<ParameterQualifier>>. Values associated with the ParameterQualifier stereotype are

“const”, “volatile” and “register”.

UML/MARTE modelling methodology

- 21 of 73 -

Parameter of a array size

In the functions that a parameter is typed by an array data type, the function declaration

can include parameters which are associated with the size of the arrays (“parameters-

array_size”). In order to connect the “size” parameter with the corresponding “array”

parameter, in the attribute Default Value of the “parameters-array_size” should include:

 name_parameter_array.length_x()

 name_parameter_array.length_y();

 name_parameter_array.length_z();

A parameter of the same “size” can be used for specifying the size of different arrays. In

this case, each array reference should be separated by a semicolon (Figure 14).

Figure 14 Array size arguments

3.3.2 Interface Inheritance

The methodology enables interface inheritance. This inheritance allows the redefinition

of operations of the interfaces partitioning the sizes of the data streams sent and

received. These streams are described in the model as parameters of these operations.

The interface inheritance enables the definition of different concurrent structures in

order to explore different design alternatives.

Figure 15 Interface generalization and operation1 of Interface1

UML/MARTE modelling methodology

- 22 of 73 -

All the functions of these interfaces are the same and have the same parameters (with

the same name and order). For the data partitioning, only the parameter to be used for

tha data splitting is necessary to be specified. The only difference is that one parameter

is specified by different data types. This new data type is a generalization of the

previous data type (see section on Data Types for exploration of concurrency structure).

Several parameters of a same function can be used for data splitting (Figure 16).

Several parameters of functions of a same interface can be used for data splitting.

The functions of an interface that are not used for data splitting should not have any

parameters (Figure 16).

Figure 16 Interface Inherence

Additionally, interface inherence is used to join different concurrent flows. This is

explained through an example. The interfaces model the functions provided by the

application components for enabling the applications interconnections. In this case, a

different interface is used. In communication of the components “matchingRight”,

“matchingLeft” and “stereoMatching” three different interfaces (Figure 17) are used.

All these interfaces have the same function associated, “stereo_matching”. However,

the declaration of this function in these interfaces is very different. In the interface

“Interface_StereoMatching” the function “stereo_matching” is completely specified,

where all the properties of the function parameters are completely characterized (data

type, size, pointer, etc.). On the other hand, the functions of the other interfaces

(“Interface_StereoMatching_Right” and “Interface_StereoMatching_Left”) only specify

the parameters used for joinning. Specifically, in the “stereo_matching” two parameters

are used to join both concurrent flows: “img_left” and “img_right”. In order to be

executed, the component “stereo_matching” has to be available for both images pre-

processors. However, the two images come from two different, independent, concurrent

flows. In order to specify that a parameter represents an element to be joined, the

corresponding join parameters have to be specified in the generalized interfaces; only

these parameters have to be specified in generalized interfaces (in the example,

“img_left” and “img_right”). Then, these parameters are not typed by any data type,

which it is understood by the code generator that the parameter is for joining concurrent

flows. In the case of Figure 17, the function “stereo_matching” of the interface

“Interface_StereoMatching_Right” only includes the parameter “img_left” which

denotes that this parameter should be provided by other components and, therefore, the

UML/MARTE modelling methodology

- 23 of 73 -

“stereo_matching” has to wait for it. For the interface “Interface_StereoMatching_Left”,

the parameter specified and not typed is “img_right”.

Figure 17 Inheritance between interfaces

3.4 Libraries

In order to enable the compilation of the application, a set of specific libraries can be

necessary. Therefore, in order to enable the generation of the makefiles, these libraries

should be modeled. These libraries are modeled as UML Artifacts specified by the

UML standard stereotype <<library>> (Figure 18).

Figure 18 Libraries

The Library artifacts can only be associated with the System component included in the

ApplicationView.

3.5 Auxiliary Files

As was described previously, each application component has the files that

implement each specific application functionality associated. However, these files can

require functions that are implemented in other files and which act as auxiliary files that

provide services for the application functionalities. These auxiliary files are modeled as

UML packages in order to represent the folder where these files are allocated. These

files are specified by the stereotype <<FilesFolder>>.

The FilesFolder stereotype has the following attributes:

1. parallelized: the file folder contains files produced after a parallelization

process.

2. highLevel: the file folder contains files that specify high-level functionality.

3. implementation: the file folder conatins files which are optimized to be

executed in a specific HW resource: DSP. NEON, GPU). .

UML/MARTE modelling methodology

- 24 of 73 -

4. notModifiable : the file folder contains files which cannot be modified for any

reason.

5. environment: the file folder contains a test bench.

Figure 19 Auxiliary FilesFolder packages

The FilesFolder package can be associated with application components

(RtUnits) and to the System components included in the ApplicationView.

UML/MARTE modelling methodology

- 25 of 73 -

4 Communication View

The Communication view defines the communication mechanisms that enable the

application components’ communication.

The UML element used in this view is the UML Component used to model the

communication components. Class diagrams are used for defining these communication

components.

4.1 Channel type specification

The generic communication mechanism is modelled by the MARTE stereotype

<<CommunicationMedia>> that represents the means to transport information from one

location to another. Then, new characteristics can be added to the communication media

in order to define different communicatuion semantics

4.1.1 Storing Communication Mechanism

A CommunicationMedia can be specified with additional characteristics in order to

define different communication semantics. The CommunicationMedia could have the

capacity to store function call requests. To model this characteristic, the MARTE

stereotype <<StorageResource>> can be applied to the CommunicatinMedia. The

attribute resMult of the StorageResource denotes the number of function call requests

that can be stored.

4.1.2 Communication semantics associated with a client application

Some additional characteristic can be added to the communication media in order to

model the communication semantics associated with the application component that

uses the communication media to access a service provided by another application

component.

The stereotype <<ChannelTypeSpecification>> adds additional characteristics to

the communication media in order to model different communication semantics.

<<ChannelTypeSpecification>>

blockingFunctionDispatching:Boolean [1]

blockingFunctionReturn:Boolean [1]

priority : integer [0..1]

timeOut:NFP_Duration [0..1]

ordering : Boolean [1]

Figure 20 ChannelTypeSpecification stereotype attributes

The attribute blockingFunctionDispatching defines the behaviour of the client

application when it requires a service from a server application: the client application is

UML/MARTE modelling methodology

- 26 of 73 -

blocked until the server application attends to the service request or it is stored in the

channel.

The attribute blockingFunctionReturn defines whether the client application is

blocked waiting for the response from the service called.

The attribute priority defines the priority associated with client-application client

in order to attend service requests coming from the channel.

The attribute time out defines the maximum time for waiting for a function’s call

response.

The attribute ordering defines whether the concurrent calls transmitted through

the channel have to be synchornized in the function return and to be dealt with as an

ordered set.

Figure 21 Examples of Channel types

The following table describes the possible semantics that can exist depending on the

values of the attributes blockingFunctionDispatching, blockingFunctionReturn of the

stereotype <<ChannelTypeSpecification>>, the resMult attribute of the MARTE

stereotype <<StorageResource>> and the attribute srPoolSize of the MARTE stereotype

<<RtUnit>> (explained in the next section). Additionally, the table specifies the

behaviour of the function call communication during execution time. The table denotes:

1. Capacity available in execution time.

2. Value of the attribute blockingFunctionDispatching.

3. Value of the attribute blockingFunctionReturn.

4. Service threads: the application component has threads available in order

to attend to service requests.

5. Store, the function call request should be stored or not in the channel

6. Block call, the client should be blocked bnefore dispatching its function

call request

7. Block return, the client should be blocked waiting for finalization of the

function called.

UML/MARTE modelling methodology

- 27 of 73 -

8. Exec, the function called can be executed or it should be delayed until

resources are available.

Static properties Run-Time State Behaviour (Semantics)

Of channel Of

channel

OfCalled

RtUnit

channel Caller (Client)

RtUnit

Called (Server)

RtUnit

Blocking

Function

Dispatching

Blocking

Function

Return

Room

for a Call

Schedule

Resource

Available

Call

Stored

Block

on Call

Block on

Return

Executed

true true Yes Yes No No Yes Yes

true true Yes No Yes No Yes Delayed

false true Yes Yes No No Yes Yes

false true Yes No Yes No Yes Delayed

false false Yes Yes No No No Yes

false false Yes No Yes No No Delayed

true false Yes Yes No No No Yes

true false Yes No Yes No No Delayed

true true No Yes No No Yes Yes

true true No No No Yes Yes Delayed

false true No Yes No No Yes Yes

false true No No No No No (*) No

false false No Yes No No No Yes

false false No No No No No No

true false No Yes No No No Yes

true false No No No Yes No Delayed

Table 3 Communication semantics to be implemented

4.2 Synchronization Mechanisms

To model the synchronization mechanisms among application components, the MARTE

stereotype <<NotificationResource>> is used. NotificationResource supports control

flow by notifying awaiting concurrent resources about the occurrence of conditions.

UML/MARTE modelling methodology

- 28 of 73 -

Figure 22 Notification resource

4.3 Shared Variable

The two previous communication mechanisms can be used to connect application

components that are allocated in the same memory partition or in different memory

partitions. An additional communication mechanism can be used in order to enable the

communication among application components. This communication mechanism is the

shared variable. The shared variable is modelled by the MARTE stereotype

<<SharedDataComResource>>. SharedDataComResource defines a specific resource

used to share the same area of memory among concurrent resources to exchange

information by reading and writing in this area of memory.

The shared variable can be protected or not. To model a protected variable the

stereotype attribute isProtected should be used. For specifying the type of the shared

variable, a UML property should be included in the UML Component

SharedDataComResource. This property (Figure 23, attribute “type”) should de typed

by a DataType (Figure 23, Float) included in the DataView. Then, in the stereotype

attribute identifierElements this property should be attached.

Figure 23 Shared variable

UML/MARTE modelling methodology

- 29 of 73 -

5 Application View

This view serves to capture the application. A component-based approach is used

to capture the application model. The application model is captured as a component,

which in turn can be composed of other components. Three types of components are

supported, active, passive and composite components. An application component

communicates with other application components through client-server ports. These

ports have associated required/provided interfaces. Provided interfaces declare the

functionalities implemented by the component and accessable by other components.

Required interfaces declare the functionalities invoked by the component but

implemented by others. The application view serves to declare and define these

components and to interconnect them, eventually generating the “top” application

component, called system component in the application view context. The system

component (and by extension, a composite component) is described through the

instantiation and interconnection of declared application components. All these

instances and interconnections configure the application architecture. Application

components are interconnected through channels. A channel can be captured as a simple

port-to-port connector (an implicit semantic is assigned). Channel semantics can be

configured (the connector is decorated with a stereotyped whose attributes enable such a

configuration).

Source code can be associated to the Application View. This is done by

associating specific functions and the files containing them the application components.

Additionally, paths to those files to complete the link can be provided. In any case, the

application model shall be platform independent.

To sum up, this view includes:

 Application architecture and declaration of the application components instanced

on it.

 association of source code (as Files previously captured in the FunctionalView)

to the application components (allowing the specification of paths)

 association of libraries

The UML elements used in this view are:

1. UML Component for modeling the application components and for defining the

element where the complete application structure is captured

2. UML Port are the interaction points between the component and its environment

3. UML Connectors for connecting application component instances. They can be

stereotyped with <<Channel>> for configuring the specific semantics of the

channel.

4. UML Operations for defining internal functions of the application components

UML/MARTE modelling methodology

- 30 of 73 -

5. UML Parameters for characterizing the internal functions of the application

components

6. UML Abstraction for associating Files defined in the FunctionalView with the

application components

7. UML constraint for defining paths, flags, compilers, etc.

8. UML links for associating constraints with model elements

Class diagrams are used for defining the application components and associating

Files, FilesFolder and constraints with application components.

Class diagrams are used for associating Files, FilesFolders, Libraries and

constraints with System components.

Composite structure diagram is used for defining the structure of the application

system.

5.1 Active Components
Active application components are modelled as UML components with the MARTE

stereotype <<RtUnit>> (Figure 24). In short, this type of components will be named

RtUnit component or RtUnit. A RtUnit component has its own execution threads, its

associated C files, and will provide/require services to/from other application

components by means of provided and required interfaces. These provided/required

interfaces and C files are defined in the FunctionalView. A RtUnit component can have

an associated set of threads in order to execute some specific functions concurrently.

5.1.1 Application Component Attributes

The following attributes of the <<RtUnit>> stereotype are considered (Figure 24):

 The attribute isDynamic. A value isDynamic=true specifies that the

application component dynamically creates threads in order to attend the

requests to the services provided by the RtUnit.

 The attribute srPoolSize specifies that the RtUnit has a finite set of threads

to attend to the requests to the services provided.

 The attribute srPoolPolicy should be infiniteWait to denote that, in the

event that there is a service request and the RtUnit cannot create a thread

to attend the service (because the srPoolSize limit has been reached), the

RtUnit waits until one of its server threads is realeased (after completing a

service request).

 The isMain attribute can be used to denote the main function of the

application (thus the entry point of an application).

UML/MARTE modelling methodology

- 31 of 73 -

Figure 24 Application components.

5.1.2 Main function of the Application Component

In order to define the main function of the application, the “main” attribute of the

<<RtUnit>> stereotype is a used. The attribute is assigned a UML operation captured in

the functional view (Figure 25).

Figure 25 Main function of an application component.

The fact of defining the main function of the component involves that the

component has implicitly associated a static thread (Figure 25) that executes such a

function.

In this case, the main function can have associated specific, initial values to its

parameters. In order to annotate thoso values, a UML constraint is used. The constraint

has to be owned by the System component of the view. In the constraint, the name of the

functions and the values of their parameters is captured by means of the following

syntax: “$initValue=nameFunction(value1,value2,value3)”.

5.1.3 Association of Files with Application Components

The specification of the set of files associated with an application component is defined:

 By using an UML Class diagram

 By using the File UML artifacts (code files) defined in the FunctionalView.

The code files are associated with a RtUnit component by means of an UML abstraction

specified by the MARTE profile <<Allocated>> (Figure 26).

UML/MARTE modelling methodology

- 32 of 73 -

Figure 26 Association Files-Application components

5.1.4 Association of File Folders with Components

The application components can have associated FileFolders. These FilesFolders are

associated with the application components such as Files: by using a UML abstraction

specified by the stereotype <<allocated>>.

Figure 27 Associations of FileFolders with an Application Component

5.1.5 The main application component

The main application component is identified by the RtUnit attribute isMain, specified

as “true”. Thus, this RtUnit component should have an associated UML operation. This

UML operation should be given the same name as the main procedure of the

functionality. This UML operation should be associated to the RtUnit component

through the RtUnit attribute main.

Figure 28 Main application component

UML/MARTE modelling methodology

- 33 of 73 -

5.1.6 Ports

Communication among application components is established through UML ports. The

ports denote the services encapsulated in the interfaces that the application component

required or provided. These ports must be modeled in different ways depending on the

type of communication.

When communication is by means of function calls of interfaces, the UML ports should

be specified by the MARTE stereotype <<ClientServerPort>>. In the attribute kind of

the ClientServerPort stereotype, the port is specified considering whether the port

provides or requires an interface. In the attributes provInterfaces and reqInterface, the

interface required or provided by the port is defined. Only one interface can be attached

to the ClientServerPort. The ClientServerPort can be either provided or required.

In other communication mechanisms, the UML (shared variable and synchronization

mechanism) ports should not be specified by any stereotype.

5.1.7 Connectors

The ports are connected by using UML connectors. The conectors can represent

simple connections or communication channels.

The former defines the connection between an application element and a shared

variable. Additionally, in a communication based on interfaces, a simple connector

denotes a pure RCP (Remote Call Protocol) in the client-server communication

paradigm.

Channels

The connectors among the application elements can respresent specific communication

channels with a well-defined semantics. In this case, the UML connectors should be

specified to define the semantics of communication established among the application

components. The stereotype <<Channel>> enables the specification of a UML

connector by a communication mechanism defined in the CommunicationView.

This sterotype has the attribute channelType (Figure 29) that is typed by a

CommunicatioMedia component for representing tthe channel type and which is

defined in the CommunicationView.

Figure 29 Channel type attached to the Channel connector

Only UML assembly connectors (in Figure 30 the UML connector established between

the elements “imageAcquisition” and “imagePreProcessing”) should be stereotyped by

the Channel. The UML delegation connectors (in Figure 30 the UML connectors that

interconnect the “imageAcquisition” ports “port_Condev”, “port_disDev” and

UML/MARTE modelling methodology

- 34 of 73 -

“portCapImage”) with ports of the System which establishes communication with the

environment.

Figure 30 Assambly and delegation connectors

Communication Mechanism and Interfaces

The previous communication mechanisms enable the information exchange among

applications through function calls provided by interfaces. The same interface can be

provided by different application components or can be provided through different ports

by the same application interfaces. The Channel connectors that are associated with the

same interface represent the same channel in the implementation stage. Therefore, these

Channel connectors should be typed by the same communication media defined in the

Communication View, thus ensuring the model coherence: the communication media

should have the same interface associated with the application ports.

Connection through shared variables

A shared variable is used for communicating two or more application components. For

connecting application components with the same shared resource, an instance of a

SharedDataComResource has to be included in the composite structure diagram of the

System component of the ApplicationView. Then, the application components are

connected to this SharedDataComResource instance by using UML connectors (Figure

31).

UML/MARTE modelling methodology

- 35 of 73 -

Figure 31 shared variable used by several application components

5.2 Pasive Components

A different set of component can be captured: components that represent information

shared by several components and whose concurrent access must be protected by some

synchronization mechanism. These components are stereotyped with the MARTE

<<PpUnit>>. It is a passive element.

The access semantics associated to the PpUnit component is defined by the attribute

concPolicy.This attribute establishes the policy applied to the services provided by

PpUnit. It may take the following values:

 sequential: no concurrency mechanism is associated so the system

designer must assure that no concurrent invocations are produced.

 guarded: several invocations may occur concurrently, but only one is

attended at a time. The rest are blocked until the execution of the

invocation being attended finishes.

 concurrent: several invocations may occur and be attended at the same

time.

The services provided by the PpUnit are enclosed in interfaces and offered by

provided ClientServerPorts. All the interfaces provided by a PpUnit component

inherent the value of the attribute concPolicy of such PpUnit component.

As in the case of the RtUnit components, they can have associated files, files

folder, libraries, and the definition of paths language…

There is a modelling constraint: the channels connected to the PpUnit instances

must blocking since the PpUnit is a passive element and it does not have resources for

attending income calls but the resource of the calling element.

5.3 Composite Components

The methodology enables to model composite application components. These

components have an internal structure, composed of interconnected application

components. Composite components are specified as UML components decorated with

the UML standard stereotype <<Subsystem>>.

The internal structure is captured through a composite structure diagram

associated to the Subsystem component. In this diagram, instances of application

components or other composite component instances are created and connected via

port-to-port connections.

The Subsystem components has ports. These ports are connected to the ports of

the internal application instances. The name of a ports of the Subsystem components

(parent ports) should have the same as the name of the port of the internal application

component instance it is connected to (children port). Parent and children ports shall

have the same interface and the same type of interface (both required or both provided).

UML/MARTE modelling methodology

- 36 of 73 -

The connectors between a parent port and a children port must not be stereotyped

(assembly connectors). Only connectors connecting internals application components

can be specified as channels (applying to them the <<Channel>> stereotype).

Subsystem components are not expected to have any File, FileFolder, or library

library associated.

Figure 32 Composite Component

5.4 Application Architecture
The top application component is captures as a UML component decorated with the

<<System>> stereotype. Within the application view context, this is call the System

component. Only one System component should be defined within the ApplicationView

package.

The System component constains instances of the RtUnit application components

interconnected through connectors. The application architecture is captured in a UML

Composite Structure diagram associated with the System component.

Figure 33 Application Structure 1

UML/MARTE modelling methodology

- 37 of 73 -

Figure 34 Application Structure 2

5.4.1 System ports: I/O communication

The System component communicates with the external environment. This environment

communication is established through ports. These UML ports should be specified by

the MARTE stereotype <<ClientServerPort>> (Figure 30 and Figure 34), specifying the

correct values of the attribute kind, provInterface and reqInterface in the case the

communication is dealt with using function calls. in Others (shared variable and

synchronization mechanism), the ports are not stereotyped.

These System ports are connected to application instances. This connection is port-to-

port. In order to keep consistence, the system ports connected to application instance

ports should have the same name (Figure 30 and Figure 34). The connection between

the System port and the application port is never stereotyped (Figure 30 and Figure 34)

since it does not represent a real channel, so the stereotype <<Channel>> must no be

applied on these connectors.

5.4.2 Periodic Application Instances

An application instance can be characterized by a period, triggering its execution

according to that period.

The period of an application component is modelled by a UML comment specified by

the MARTE stereotype <<RtSpecification>>. In the attribute occKind the period is

annotated as:

 periodic (period= (value, unitTime))

Then, the RtSpecification comment is associated to the RtUnit instance component by

using a UML link (Figure 35).

UML/MARTE modelling methodology

- 38 of 73 -

 Figure 35 Periodic application instance

5.4.3 System Files

The System component may have associated files. These files are defined in the

FunctionalView and identified by the UML standard stereotype <<File>> and by the

stereotype <<SystemFile>>. These files are associated with the System component

through a UML abstraction specified by the MARTE stereotype <<allocated>>, as is

shown in Figure 36.

Figure 36 System component with files associated

5.5 Libraries

In order to enable the compilation of the application, a set of specific libraries can be

required in order to enable the makefiles’ generation

The Libraries defined in the FunctionalView are associated with the System

component by means of UML Use relations, as Figure 37 shows.

UML/MARTE modelling methodology

- 39 of 73 -

Figure 37 System component with libraries associated

5.6 Files Folders

The FilesFolders packages defined in the FunctionalView are associated with the

System component by a UML abstraction association specified by the MARTE

stereotype <<Allocated>>. The designer is free to include the corresponding UML

artifact files in these packages in order to model the real auxiliary files explicitly; this is

not mandatory.

Figure 38 System component with FileFolder package

5.7 Modelling Variables

The model has modelling variables. More specifically, in the modelling of the

application, these modelling variables are used to define characteristics required for

completely characterizing the application components of the system in relation to the

makefiles’ generation and code generation. The modelling variables are:

1. language: specifies the language in which the specific application

functionality is implemented. Not mandatory (by default, it is “C”).

2. path: specifies the path where the functional files are allocated in the

host. Mandatory for the System component.

3. path_system: specifies a path of a File or FilesFolder of a application

component that has as first part of the absolute path, the path associate to

the System component

4. creation: specificies the mechanism used to create a specific application

component instance. Mandatory only when the language is “C++”.

UML/MARTE modelling methodology

- 40 of 73 -

5.8 Modeling Variable Specification

The variables are annotated as $nameVariable=”valueVariable”; as Figure 39 shows.

Figure 39 Specification of Variables

The model variables are annotated with UML Constraints owned by the component

(RtUnit, System, etc.) denoted in the ownedRule of the component (Figure 40) and in

the “Context” attribute of the constraint (Figure 40).

Figure 40 UML constraint for application component variables

The “Specification” attribute of constraint contains the declaration of the variables. The

variable annotation is captured in a LiteralString (Figure 41).

Figure 41 Annotation in a UML constraint for variable specification

Then, the constraint is associated with an element model that is included in the

ConstrainedElement attribute of the UML constraint (Figure 40). The

ConstrainedElement attribute denotes the model element which the variables annotated

in the constraint are applied. This association is captured by using and UML link

between the constraint and the model element.

It is necessary to distinguish which element is the owner of the constraint and the

element to be specified by the variables of the constraint. In Figure 42, there are four

constraints (“MAC_LMAC_states_facets”, “MAC_LMAC_varibles”,

“MAC_InterfacesFolder_LMAC_common” and “MAC_Folder_LMAC”).

UML/MARTE modelling methodology

- 41 of 73 -

Figure 42 Example of multiple constaints in the same application component

All these UML constraints are owned by the application component “lmac” (Figure 43).

Figure 43 Constrains of the “lmac” application component

However, not all of these constraints are applied to the same model element, denoted by

the attribute “ConstrainedElement” of the constraints (Figure 44).

Figure 44 Constraints with different constrained elements

5.8.1 System Components

The model variables that may be associated with a component constraint are:

1. language

UML/MARTE modelling methodology

- 42 of 73 -

2. path

5.8.2 Language

The variable $language defines the coding language of the complete application.

5.8.3 Path

As was mentioned previously, at least the $path variable has to be defined in the

model. This variable has to be associated with the System component included in the

ApplicationView. Through this variable, the designer annotates the absolute path where

the application functionality files are allocated (Figure 45), which act as base paths for

the rest of the system. This is mandatory.

5.9 Association of source code to application components

The model variables that can be associated with a RtUnit application component

constraint are:

1. language

2. path

3. path_system

4. creation

5.10 Concatenation of paths

The creation of the makefiles from the information captured in the model requires the

paths of the different model elements to be exact. The criteria for composing these paths

is a concatenation of different paths.

Figure 45 Specification of the System’s base path

The base path is the $path annotated in the System component. This path is used for

creating the complete paths of the different files, filesfolder, etc. of the application

(Figure 45).

Then, each application component has its own relative path. In Figure 46, the

application component “lmac” has the associated constraint “MAC_LMAC_variables”.

This constraint specifies the $language, $creation and $path. In relation to the $path,

the base path for the files and files-folder associated with this component is

“home/leonidas/yaw/files/components/mac/” that is, the concatenation of the System’s

base path and the application component path.

UML/MARTE modelling methodology

- 43 of 73 -

Figure 46 Application components with different types of model variables

To complete the path of the files “ComponentCoreH” and “ComponentCoreCpp”

in Figure 46, to the previous path (“home/leonidas/yaw/files/components/mac/”), the

path associated with the Files is concatenated as well:

“home/leonidas/yaw/files/components/mac/lmac/”. Finally, the name of the attribute

“File name” of the File model element (see section 3.1) is concatened. Thus, the path of

the File is “home/leonidas/yaw/files/components/mac/lmac/ComponentCore.h”.

In the case of the FilesFolder “lmac”, it does not have any constraint associated.

In this case, the path is the System path (Figure 45) plus the application component path

(Figure 46) and the name of the FileFolder (or File):

“home/leonidas/yaw/files/components/mac/lmac/”.

A diferent case is the specification of the path for the path “mac”. This path has an

associated constraint where a $path_system variable is annotated. In this, the creation of

the path does not consider the base path of the application component (in Figure 46,

“yaw/components/files/”). In this case, the System path (Figure 45) is concatenated with

the value of the $path_system variable and the name of the FilesFolder:

“home/leonidas/yaw/files/yaw/interfaces/mac/” and

“home/leonidas/yaw/files/yaw/common/mac/”.

When two or more constraints are associated with a File or FileFolder, this means

that there are two or more Files or FilesFolders with the same name but in different

locations (Figure 46, “mac” FilesFolder).

UML/MARTE modelling methodology

- 44 of 73 -

6 Memory Space View

The memory space view contains the components that identify the memory spaces,

which represent the executables of the system. Thus, an executable is a memory space

in this methodology. These memory partitions are used for grouping application

components.

The UML elements used in this view are:

1. UML Component for modeling the memory partition types and other Components

in order to define executables

2. UML Generalization for relating the System component of the ApplicationView with

the System component of the MemorySpaceView.

3. UML Abstraction for associating application components to memory partitions.

Class diagrams are used for defining the memory partition types and for capturing

the UML generalization of the System components.

Composite structure diagrams are used for defining the memory partition

instances.

6.1 Process modelling

Memory partitions are modeled by the MARTE stereotype <<MemoryPartition>>

applied on a UML component (Figure 47).

Figure 47 Memory partitions

6.2 Process structure

The executables are defined in a System component included in the view as

instances of the MemoryPartition components previously defined (Figure 48).

Figure 48 Executables definition

UML/MARTE modelling methodology

- 45 of 73 -

6.3 Application Allocation structure

In this view, the allocation of the application components to the memory partitions

(executables) is dealt with.

This System component is used in order to allocate the application instances

defined in the ApplicationView to the corresponding memory paritions. This System

component should be specialized by the System component defined in the

ApplicationView. This specialization is modelled by means of a UML generalization

defined in a UML class diagram. Only one System component should be defined within

the Memory Space View package (Figure 49).

Figure 49 Specialization of the System component of Memory Allocation View

By means of a UML composite structure diagram associated with the System

component, the application instances defined in the System component of the

ApplicationView are mapped onto the memory spaces. The application component

instances are mapped onto memory partition instances by means of UML abstractions

specified by the MARTE stereotype <<allocate>>.

Figure 50 Memory partition allocation

In Figure 50, the yellow boxes are application components that are mapped onto

memory partitions.

6.3.1 Contraints of Allocation

There is a modelling constraint in terns of application mapping: for each

memory space, only one-application instance with implicit thread associated (section

5.1.2) is allowed.

UML/MARTE modelling methodology

- 46 of 73 -

6.4 Composite components Allocation

When an instance of a composite component is allocated in a memory partition, it

is involved that all the internal instances of such composite component are allocated in

that memory partition. The internal parts of a composite component can not be allocated

in different memory partitions.

UML/MARTE modelling methodology

- 47 of 73 -

PDM Views

7 HW Resources View

The HwResourceView declares all the HW components required for the

specification of the platform architecture. In the ArchitecturalView, instances of the HW

components declared in the HW Resources view will be used in the capture of the HW

architecture.

The UML elements used in this view are:

1. UML Components for modeling the HW component types

Class diagrams are used for defining the HW components.

The MARTE stereotypes used to specify the HW components that can be captured

in the HwResourcesView are shown below.

UML2 Diagram elements MARTE profiles MARTE stereotypes

Component

HRM

HwProcessor

HwRAM

HwROM

HwCache

HwBus

HwMedia

HwEndPoint

HwBridge

HwI_O

HwPLD

HwISA

Table 4 MARTE stereotypes used for refining the HW platform

Figure 51 HW platform resources

UML/MARTE modelling methodology

- 48 of 73 -

7.1 Physical Magnitudes

HW component attributes can be annotated with values, which can be either a-

dimensional or represent a physical magnitude. There are two different ways to annotate

the value of the attribute with its corresponding physical magnitude:

1. (value=valueSpecification, units=physicalMagnitude)

a. (value=200, units=MHz)

b. (value=2, units=mW)

2. (valueSpecification, physicalMagnitude)

a. (200,GB)

b. (25,nJ)

The accepted units for the each attribute and the default physical magnitude are

shown in the following table.

Attribute Physical magnitude

frequency GHz

MHz

KHz

Hz

memorySize TB

GB

MB

KB

B

wordWidth byte

BandWidth Gb/s

Mb/s

Kb/s

b/s

memoryLatency us

Ns

power W

mW

uW

nW

UML/MARTE modelling methodology

- 49 of 73 -

pW

energy J

mJ

uJ

nJ

pJ

blockSize word

Table 5 HW attributes and physical units

7.2 HW Processors

HW processors are modelled as components decorated with the

<<HwProcessor>> the MARTE stereotype.

Frequency

The frequency of the processors is captured in the HwProcessor attribute

frequency.

Slots

The HWProcessor may have associated the number of slots when it is directly

connected to a TDM (in this case, the HW processor is assumed to have the network

interface capabilities). This property is modelled as the attribute assignedSlots:

NFP_Integer. Then, in the property “Default Value” the value is annotated.

7.2.1 Cache Processor

Each HW processor could have data and instruction caches memories. Thus, each

HW processor can have associated a set of HwCaches instances. The caches can be

associated to a HwProcessor by means of the attribute caches of the stereotype

HwProcessor (Figure 52). This stereotype attribute selects the UML components that

are characterized by HwCaches.

Figure 52 Associating caches to a HWProcessor

7.2.2 Processor ISA

The HwProcessor can be more specifically defined by an ISA. The MARTE stereotype

<<HwISA>> is applied to a new UML component. This HwISA component is

UML/MARTE modelling methodology

- 50 of 73 -

associated with the HwProcessor through the HwProcessor attribute ownedISAs. Two

attributes of the HwISA stereotype are considered in this methodology:

family: NFP_String. Defines the ISA family

type: ISA_Type. Specifies the ISA type.

The Isa_type includes:

 RISC: Reduced Instruction Set Computer.

 CISC: Complex Instruction Set Computer.

 VLIW: Very Long Instruction Word.

 SIMD Single Instruction Multiple Data.

 Other.

 Undef.

In the case of this modeling methodology, the possible values of the family attribute are

DSP, GPU, CortexA9, undef.

7.3 Processor Caches

The cache memories are modelled by the MARTE stereotype HwCache. Table 6

shows the possible values of the type and level attribute of the HwCache stereotype that

determines the type of cache. Figure 53 shows an example of caches components.

HwCache attribute Type of Cache

level = 1

&

type = data

Data cache

level = 1

&

type = instruction

Instruction Cache

level !=1

&

type = unified

Unified Cache for caches of

level more that one

Table 6 HwCache attribute values

UML/MARTE modelling methodology

- 51 of 73 -

Figure 53 Cache components

Additionally, the caches can be characterized with three additional attributes: the

block size (specifies the width of a cache block), the associativity and the number of

sets. These caches attributes can be specified in the attribute structure of the MARTE

stereotype HwCache. The attribute structure is typed as CacheStructure (Table 7).

HwCache attribute Attributes

structure blockSize

associativity

Table 7 Definition of the structure attribute

The specification of these attributes has to be annotated as a string. The attributes

annotation is shown in Figure 54. The attributes are identified as blockSize and

associtivity. Both data annotations are specified in parentheses and separated by comma.

The unit of the blockSize is the WORD (Figure 54). The word size associated to the

cache memory is annotated in a UML property named wordSize of the HwCache

component. This specifed by the MARTE stereotype <<Nfp>> and typed by the

MARTE NFP data type NFP_DataSize (Figure 55). Then, in the “Default Value” the

value is annotated. When this attribute is not present, the default value annotated is 4

Bytes.

Figure 54 Specification of the attributtes blockSize and associativity

The size of the caches is defined in the attribute memorySize.

The type of write policy is specified in the attribute writePolicy. It can be

writeBack or writeThrough.

In the case the cache is typed as instruction (attribute type), another attribute can

be captured; the size of the address. This property is annotated in the HwCache attribute

addressSize.

UML/MARTE modelling methodology

- 52 of 73 -

Figure 55 Cache specification

7.4 Bus

The buses are modelled by the MARTE stereotype <<HwBus>>. Different

properties characterize a bus.

Word width

The property word width specifies the word width per transaction expressed in

bits or bytes and it is captured in the HwBus attribute wordWidth. It is expressed in

bytes. The default value of wordWidth is 8 bytes

Band width

The property bandwidth specifies the number of transactions per second. It is

captured in the HwBus attribute bandwidth. It is expressed in bits/s, Kbits/s, Mbits/s…

The default value of the bandWidth is 1 Mbit/s.

Burts size

The property burst size denotes the size … It is modelled by adding an UML

property to the HwBus component named it “burstSize”. The attribute is specified by

the MARTE stereotype <<NFP>>. This attribute is typed by the MARTE NFP data type

NFP_DataSize. Then, in the “Default Value” property the value is annotated. When this

attribute is not present, the default value annotated is the wordWidth attribute value.

7.4.1 TDMA bus

For charactering a bus TDMA a set of specific properties should be captured.

These properties are captured as UML attributes of a HwBus component. These

attributes are:

 numberSlots: NFP_Integer

 timeSlot: NFP_Duration

 capacitySlot: NFP_DataSize

 payloadSlot : NFP_DataSize

 payloadRateSlot : NFP_DataTxRate

 timeCycle: NFP_Duration

UML/MARTE modelling methodology

- 53 of 73 -

Figure 56 TDM bus component properties

Then, in the property “Default Value” of each of the previous attibutes, the

individual value is annotated.

7.5 Bridges

In order to connect busses the bridge components should be used. This elements

are modelled by the MARTE stereotype <<HwBridge>>. HwBridges only can connect

HwBus component. The only property considered is the frequency.

7.6 FPGA

The FPGA is modeled by the MARTE stereotype <<HwPLD>>.

7.7 Memories

The memories are modelled by the MARTE stereotypes <<HwRAM>>,

<<HwROM>> or <<HwMemory>> according to the type of memory to considerer.

Memory size

The size of the memory is annotated in the attribute memorySize.

Memory latency

The memory latency attribute is annotated in the attribute timmings. In this

attribute, there is annotated memoryLatency=(value, unit).

7.8 Network

A network is modelled by using the MARTE stereotype HwMedia.

7.9 Network Interfaces

The network interfaces are modelled by the MARTE stereotype

<<HwEndPoint>>. Each HwEndPoint component should have an attribute called

IPAddress. In the attribute, Default Value specifies the IP address by using an UML

Literal String, in order to denote the IP address to enable the TCP/IP communication.

This IPAddress should be different for ach HwEndPoint component. As a modelling

UML/MARTE modelling methodology

- 54 of 73 -

constraint, only one instance of HwEndPoint component can be included in an

execution node.

7.10 I/O Components
The MARTE stereotype <<HwI_O>> models the HW component used as I/O

system device.

7.11 HW components’ Functional Modes

The HW components can have different associated functional modes that specify

different characteristics that define the HW component’s behaviour according to a set of

configuration parameters. These functional modes are defined by attributes: frequency,

voltage, dynamic power and average leakage. In addition, the transitions among the

functional modes are characterized as well. The transitions among modes are

characterized by the time consumption in the mode transition and the power

consumption in the mode transition.

In order to model these functional modes, the corresponding HW component

should have a UML state machine. In a UML state diagram, the HW component modes

and the mode transitions are captured. The HW component modes are represented as

UML states specified by the MARTE stereotype <<Mode>>. The mode transitions are

represented as UML transitions specified by the MARTE stereotype

<<ModeTransition>>.

For characterizing the functional attributes previously mentioned, some modelling

elements have been used. The first one is taken from the paper
1
, specifically the

stereotype <<HwPowerState>>, in order to specify the frequency of the HW component

in this mode. The attribute Pstatic of the HwPowerState enables to capture the power

consumption in idle in this mode. The dynamic power of the mode is defined by the

application of the MARTE stereotype <<ResourceUsage>>, specifying the attribute

powerPeak. In order to define the last two attributes of a functional mode, voltage and

average leakage, two UML comments should be associated with the corresponding

UML state. There, both values are annotated. All the attribute values should be

annotated as the MARTE specifies in order to define the non-functional properties

(value, unit).

In order to characterize the mode transitions, the power and the time consumption

have to be defined. The time consumption is defined in the attribute setupTime owned

by the stereotype HwPowerStateTransition defined in the previously mentioned paper.

The power consumption is specified by the stereotype <<ResourceUsage>>.

1 T. Arpinen, E. Salminen, T.D. Hämäläinen, M. Hänniikäinen. ”MARTE profile extension for modeling dynamic power
management of embedded systems”. JSA, April 2012, Pages 209–219.

UML/MARTE modelling methodology

- 55 of 73 -

Figure 57 HwProcessor mode specification

7.12 Power Consumption
The HW components have associated static power consumption. This value is

modelled by applying the MARTE stereotype <<HwComponent>> to the HW

component and annotating the value in the attribute staticConsumption.

7.13 Energy Consumption

There are set of properties that can be associated to specific HW resources in

order to determine the energy consumption of some actions implemented by these HW

resources.

Processors

The processors have associated the energy consumed by cycle. The energy

consumption per cycle is captured by adding a UML attribute named cycle typed by a

NFP_Energy data type. The attribute is specified by the MARTE stereotype <<NFP>>.

Then, in the property “Default Value” the value is annotated.

Caches

The caches have associated two energy consumptions; the consumption of a hit

and the consumption of a miss. The hit energy consumption is captured by adding a

UML attribute named hit typed by a NFP_Energy data type. The attribute is specified

by the MARTE stereotype <<NFP>>. Then, in the property “Default Value” the value

is annotated.

The miss consumption is captured by adding a UML attribute named miss

repeating afore explained process for specifying the value.

Buses

The buses have associated the energy consumed in order to access to them. The

bus access energy consumption is captured by adding a UML attribute named access

UML/MARTE modelling methodology

- 56 of 73 -

typed by a NFP_Energy data type. The attribute is specified by the MARTE stereotype

<<NFP>>. Then, in the property “Default Value” the value is annotated.

Memories

The memories have associated the energy consumed in order to access to them.

The memory access energy consumption is captured by adding a UML attribute named

access typed by a NFP_Energy data type. The attribute is specified by the MARTE

stereotype <<NFP>>. Then, in the property “Default Value” the value is annotated.

8 SW Platform View

The SWPlatformView defines the operating systems that are in the HW/SW

platform. The operating systems are modelled by a UML component specified by the

stereotype <<OS>>. The attributes associated with this stereotype are:

<<OS>>

type:String [1]

scheduler: Scheduler[*]

drivers: DeviceBroker [*]

interProcessCommunication:

InterProcessCommunicationMechanism [1]

 Figure 58 OS stereotype attributes (modificar)

The type of the OS is defined in the type attribute (linux, windows, etc.).

The attribute scheduler defines the schedulers associated to the OS. The

schedulers are modelled by the MARTE stereotype <<Scheduler>>. In this component,

the scheduling policy can be annotated. The scheduling policy is captured in the

attributes schedPolicy and otherSchedPolicy.

The attribute schedPolicy is an enumeration. The possible values considered in

this methodology are “EarliestDeadlineFirst”, “FixedPriority”, “RoundRobin”…

“Other”. In the case the value is “Other”, the scheduling policy is annotated in the

attribute otherSchedPolicy.

The driver attribute of the stereotype OS enables association of DeviceBrokers

with the OS component

The interProcessCommunication attribute defines the OS services that

automatically create the communication infrastructure in order to communicate

processes in the OS. Thus, code will be created ad-hoc depending on which

mechanism is specified for each OS instance. Five types of inter process

UML/MARTE modelling methodology

- 57 of 73 -

communication mechanism are currently supported for automatic code generation.

These types are:

 FIFO channels

 Sockets

 message queues

 shared memories

 files

Using this option, designers can easily explore the performance impact that

each one has on the final implementation and select the most suitable ones for each

system.

Figure 59 OS component

8.1 Drivers

The OS components can have an associated set of drivers to provide access to

peripherals or to manage specific processing HW resources of the platform. Drivers are

modelled by the MARTE stereotype <<DeviceBroker>> applied on an UML

component.

A DeviceBroker driver can have associated properties that enable well-defined driver

specification:

 Repository: denotes the address where the driver can be downloaded.

 Parameter: denotes configuration information for the driver.

 Device: is the file for the control of the HW resource

Figure 60 Driver for DSP management

UML/MARTE modelling methodology

- 58 of 73 -

8.1.1 Repository

The “repository” property denotes the url direction of the repository where the

driver can be downloaded in order to be installed in an automatic way. This property is

captured in a UML property included in the DeviceBroker component. The name of this

UML property should be “repository”. The address is annotated in the attribute “Default

Value” of the UML property, by using a UML Literal String attached to the “Default

Value” attribute.

8.1.2 Parameters

The “parameters” property denotes the set of paramaters required for a correct

configuration of a driver. This property is captured in a UML property included in the

DeviceBroker component. The name of this UMl property should be “parameters”.

Then, the set of parameters are annotated in an attribute “Default Value” of the UML

property, a UML Literal String attached to the “Default Value” attribute.

Figure 61 “Parameter” driver property

8.1.3 Device

The “device” property denotes the device property required for a correct

configuration of a driver. This property is captured in a UML property included in the

DeviceBroker component. The name of this UMl property should be “device”. Then, the

set of parameters are annotated in an attribute “Default Value” of the UML property, a

UML Literal String attached to the “Default Value” attribute.

Figure 62 “Device” driver property.

UML/MARTE modelling methodology

- 59 of 73 -

PSM Views

9 Architectural View

The Architectural view captures the platform specific model (PSM) as a mapping

of the PIM onto the platform. Moreover, the architectural view also describes the

platform architecture. The platform specific model is captured as a component

containing the following items:

 SW platform architecture (e.g. OS instances).

 HW platform architecture, which includes

o Instances of HW resources (processors, memories, buses, network, etc.).

o Interconnections amon those HW resources

 Association of the HW resources to OS.

 Mapping of the PIM to the platform

9.1 Modelling of the HW/SW platform architecture

 The Architectural View contains the System component, i.e. a component decorated

by the <<System>> stereotype. The System component of the architectural view

represents the platform specific model. Only one System component should be present

in the Architectural View package. A composite structure diagram, as the one shown in

Figure 63, is associated the system component, and used to capture the HW/SW

architecture of the platform.

Figure 63 HW & SW platform architectures

 The HW architecture is captured by instancing HW components declared in the

HW Resources View and interconnecting them through UML port-to-port connections.

The SW platform architecture is composed of instances of the OS components included

in the SWPlatformView.

UML/MARTE modelling methodology

- 60 of 73 -

9.2 Platform Mapping: SW instances onto HW instances

The association of the OS instances with HW resources instances is modelled by

means of UML abstractions decorated with the MARTE <<allocate>> stereotype (see

Figure 63).

9.3 PIM to Platform Mapping

In the simplest case, application component instances can be mapped to the platform

resources (RTOS instances or processing elements). Moreover, the methodology also

enables the mapping of other PIM elements, namely schedulable resources (threads) and

memory spaces onto the platform resources.

In order to enable the mapping of PIM application component instances onto the

SW/HW platform, the System component of the architectural view (representing the

PSM) view has to be defined as a specialization of a System component defined in the

PIM view which contains the PIM elements to be mapped. Therefore, if component

application instances are going to be mapped, the PIM System component of the

ApplicationView can be extended. However, if memory spaces are going to be mapped,

then the System component of the MemorySpaceView have to appear as the parent port.

The specialization relation is captured in a UML class diagram, by mean of a UML

generalization.

Figure 64 The System component of the Architectural View reflects a PSM, which

specializes and increments the PIM model.

Figure 64 gives an example of inheriting the system component of the memory space

view. It allows to refer and map memory partitions (Figure 65). Notice that, since both,

the system component of the memory space view, and the system component of the

concurrency view (in case they appear) inherit the system component of the application

view, in this case, the application components can be also referenced and mapped

(Figure 65).

UML/MARTE modelling methodology

- 61 of 73 -

Figure 65 Mapping memory partitions onto the HW/SW platform.

Figure 66 Mapping application component instances onto the HW/SW platform.

The destination of the mapping can be either a RTOS or a processing element.

There are a number of implicit assumptions and mapping rules. In general, a memory

partition can be allocated to either one RTOS instance. It can be also allocated to a

processing element. In such a case, there are two possibilities. If an OS instance has

UML/MARTE modelling methodology

- 62 of 73 -

been allocated to such a processing element instance, then the mapping is equivalent

(and thus a synthetic capture) to a mapping to that RTOS instance (with a specific

affinity). However, if no OS instance is associated, it means a bare metal application.

Whe application component instances and schedulable resources are allocated to RTOS

and processing elements similar rules apply. The mapping of the elements to different

processing elements not associated to the same OS instance necessarily implies different

memory partitions. A schedulable resource can be mapped to the several processing

elements (meaning affinity in the case they are under the same RTOS).

UML/MARTE modelling methodology

- 63 of 73 -

10 Verification View

The Verification View defines the structure of the system environment. The

environment has to be thoroughly defined in order to enable the execution of the

performance estimation tools during the design process with appropriate inputs.

The environment structure consists of environment components that interact with

the system. Additionally, these environment components have the associated functional

elements that define their functionality.

For modeling the environment, a set of stereotypes of the UML standard profile

UTP has been selected.

10.1 Environment components

The environment components represent the devices that interact with the System.

The environment components are modelled as UML components. This set of UML

components is specified by means of stereotypes included in the standard UML Testing

Profile (UTP). The components that compose the system environment are defined in a

UML class diagram. These components are specified by the UTP stereotype

<<TestComponent>> (Figure 67).

Figure 67 Environment component

10.2 Environment component Functionality

Each environment component has an associated specific functionality. This

functionality is modelled as UML components specified by the MARTE stereotype

<<RtUnit>> and the UTP stereotype <<TestComponent>> (Figure 68). The

environment application components should be included in the ApplicationView like the

rest of the application components of the system.

Figure 68 Environment application components

All these RtUnit-TestComponent components can have the same associated

modeling elements (threads, file folder, files) as the rest of the application components.

These RtUnit-TestComponent application components have associated C files.

These C files are file artifacts defined in the Functional View. The files should be

UML/MARTE modelling methodology

- 64 of 73 -

specified by the UML standard stereotype <<File>> and the stereotype

<<ApplicationFile>>. The files used for defining the functionality of the environment

should be typed as environment=true. The assignation of the file artifacts is done

through a UML abstraction specified by the MARTE stereotype <<allocated>> (Figure

69).

Figure 69 Environment Application components with associated Files

10.3 Environment component structure

Each environment TestComponent component has internal parts that are the

environment application components. The internal functional structure of the

environment TestComponent component is captured by using intances of RtUnit-

TestComponent application components (Figure 70) in a Composite structure diagram

associated with the environment TestComponent component.

Figure 70 Application instances of an environment component

10.4 Environment component structure: ports

The communication is established through ports. The ports specify the interfaces

required/provided by the components for the communication. The ports are specified by

the MARTE stereotype, being defined as provided or required, where an interface is

associated.

The ports that have been specifed by the ClientServerPort stereotype are those of

the environment component (TestComponent component), as can be seen in Figure 71

(Camera TestComponent). These TestComponent ports are connected to the internal

application instance ports by using UML connectors (Figure 71). These application

UML/MARTE modelling methodology

- 65 of 73 -

instance ports have to be named similarly to the TestComponent port that they are

connected to (Figure 71).

Figure 71 Environment Application components

10.5 Environment structure

The environment structure is composed of insances of environment components

connected to the System.

The environment structure is modelled in a UML component specifed by the UTP

stereotype <<TestContext>>. The environment structure is modelled in a UML

composite structure diagram associated with this TestContext component. This

composite structure diagram contains instances of TestComponents and a property typed

by a System component; specifically, the System component defined in the Application

View since the port that interacts with the environment is defined in this System

component included in this model view; this System property should be specified by the

UTP stereotype SUT (Sytem Under Test).

Figure 72 Definition of the environment structure

Then, in order to define the semantics of channels among the TestComponents and

the System, UML connectors should be specified by the stereotype Channel, specifying

the type of communication media defined in the CommunicationView.

10.6 Memory allocation

The Environment elements have to be allocated to memory spaces. The

TestContext component has to be associated with the System of the MemorySpaceView.

This System component should be specialized by the TestContext component defined in

the VerificationView. This specialization is modelled by means of a UML generalization

defined in a UML class diagram (Figure 73).

UML/MARTE modelling methodology

- 66 of 73 -

Figure 73 Generalization of Environment structure with the System component of the

MemorySpaceView

Then, the allocation on memory spaces of the environment component (instances

of TestComponent components) can be done (Figure 74).

Figure 74 Allocation of environment component to the memory partitions

This view is not mandatory. The reason is that the methodology considers an

alternative solution. As described above, different files can be associated with the

system. Using this feature, systems with minimal environments can be modelled

directly indicating the source file with the environment code instead of creating a

complete specific view.

UML/MARTE modelling methodology

- 67 of 73 -

11 Annex I: Methodology Stereotypes

Stereotype Attributes Profile

DataView ESSYN

FunctionalView ESSYN

ApplicationView ESSYN

MemorySpaceView ESSYN

HWResourcesView ESSYN

SwResourcesView ESSYN

ArchitecturalView ESSYN

VerificationView ESSYN

Tupletype MARTE

CollectionType collectionAttrib:property [0..1] MARTE

DataSpecification size:NFP_Data [1]

pointer:Boolean [1]

dataSpecifier: Specifier [1]

dataQualifier: Qualifier [1]

complexDataType : String [0..1]

ESSYN

File Standard UML

ApplicationFile parallelized: Boolean [1]

highLevel: Boolean[1]

implementation: String [0..1]

notModifiable: Boolean [1]

environment: Boolean [1]

ESSYN

SystemFile systemConfiguration: Boolean [1]

systemMetrics:Boolean[1]

ESSYN

UML/MARTE modelling methodology

- 68 of 73 -

environment: Boolean [1]

RTL: Boolean [1]

TLM: Boolean [1]

FilesFolder parallelized: Boolean [1]

highLevel: Boolean[1]

implementation: String [0..1]

notModifiable: Boolean [1]

environment: Boolean [1]

ESSYN

ClientServerSpecification MARTE

Pointer ESSYN

CommunicationMedia MARTE

StorageResource result : NFP_Integer[0..1] MARTE

ChannelTypeSpecification blockingFunctionDispatching:Boolean [1]

blockingFunctionReturn:Boolean [1]

priority : integer [0..1]

timeOut:NFP_Duration [0..1]

ordering: Boolean [1]

ESSYN

NotificationResource MARTE

SharedDataComResource identifierElements: TypedElement= [0..*] MARTE

RtUnit isMain : Boolean [1]

main : Operation [0..*]

srPoolSize: Integer [0..1]

srPoolPolicy : PoolMgtPolicyKind [1]

MARTE

create UML standard

Allocated MARTE

ClientServerPort kind : ClientServerKind [1] MARTE

UML/MARTE modelling methodology

- 69 of 73 -

provInterface : Interface [0..1]

reqInterface : Interface [0..1]

Channel commType: CommunicationMedia [1]

ESSYN

System ESSYN

MemoryPartition MARTE

Allocate MARTE

HwProcessor ownedISA : HwISA [0...1]

caches : HwCaches[*]

MARTE

HwRAM MARTE

HwROM MARTE

HwCache type : CacheType [1]

level: NFP_Natural [0..1]

MARTE

HwDMA MARTE

HwBus MARTE

HwMedia MARTE

HwEndPoint MARTE

HwBridge MARTE

HwI_O MARTE

HwPLD MARTE

HwISA family: NFP_String [0..1]

type: ISA_Type [1]

MARTE

Mode MARTE

HwPowerState frequency : NFP_Frequency [0..1] MARTE

UML/MARTE modelling methodology

- 70 of 73 -

Pstatic: NFP_Power [0..1]

ModeTransition MARTE

HwPowerState Transition setUp : NFP_Duration [0..1] MARTE

ResourceUsage powerPeak : NFP_Power [0..1] MARTE

OS type:String [1]

scheduler: Scheduler[*]

drivers: DeviceBroker [*]

interProcessCommunication:

InterProcessCommunicationMechanism [1]

ESSYN

DeviceBroker MARTE

TestComponent UTP

TestContext UTP

SUT UTP

Reference ESSYN

Qualifier qualifier:Qualifier [1] ESSYN

Table 8 List of Stereotyes and attributes used in this modelling methodology.

12 Annexo II: Methodology Enumerations

Enumeration Values Profile

UML/MARTE modelling methodology

- 71 of 73 -

Specifier None

Char

signed char

unsigned char

short

short int

signed short

signed short int

unsigned short

unsigned short int

int

signed int

unsigned

unsigned int

long

long int

signed long

signed long int

unsigned long

unsigned long int

long long

long long int

signed long long

signed long long int

unsigned long long

unsigned long long int

float

double

long double

void

ESSYN

Qualifier None ESSYN

UML/MARTE modelling methodology

- 72 of 73 -

Const

Volatile

register

PollMgtPolicyKind infiniteWait

timedWait

dynamic

exception

other

MARTE

ClientServerKind proreq

provided

required

MARTE

CacheType data

instruction

unified

MARTE

ISA_Type RISC

CISC

VLIW

SIMD

Other

Undef

MARTE

CommunicationEngineKind undef

default

MCAPI

OPenMP

OpenStream

TCP/IP

ESSYN

CommunicationOSServiceKind undef

FIFO

Socket

messgeQueue

SharedMemory

File

ESSYN

InterProcessCommunicationMechanism FIFO ESSYN

UML/MARTE modelling methodology

- 73 of 73 -

Socket

MessageQueue

SharedMemory

File

