

UML/MARTE

Methodology

for DSE

May 3th, 2016

Microelectronics Engineering Group

TEISA Dpt. , University of Cantabria

Authors: P. Peñil, F.Herrera

- 2 of 28 -

Index:

1 REVISION HISTORY ... 5

2 INTRODUCTION.. 6

3 DSE PARAMETERS .. 7

3.1 DSE variables for components .. 7
3.1.1 DSE parameters definition in the stereotype attributes ... 8
3.1.2 DSE parameters definition in the ExpressionContext ... 9

3.2 DSE variables for instances ... 9

3.3 DSE Allocation variables ... 10

3.4 Default Values ... 10
3.4.1 Default Values for DSE variable in components ... 10
3.4.2 Default Values for DSE variable in instances .. 11

3.5 DSE variables for concurrency exploration ... 12
3.5.1 DSE variables for channel types Default Values for DSE variable in instances 12
3.5.2 DSE variables of application component .. 13

4 DSERULE .. 15

4.1 Definition of DseRule parameters ... 15

4.2 Definition of DseRule expression ... 16
4.2.1 Conditional structure ... 17
4.2.2 Or logic operand ... 18
4.2.3 And logic operand .. 18
4.2.4 Combined rules .. 18
4.2.5 Allocation DSE rule ... 19

5 METRICS AND REQUIREMENTS .. 22

5.1 Metrics modeling .. 22

5.2 Requirements modeling ... 22

5.3 System Metrics .. 23

5.4 System Dependent Metrics... 23

6 ANNEX I: METHODOLOGY STEREOTYPES 27

- 3 of 28 -

Index of Tables:
Table 1 Logic operands 17

Table 3 Algebraic operands 17

Table 4 Decision structure 18

Table 5 Logic structures 18

Table 6 Allocation operands 19

Table 7 System metrics 23

Table 8 Processor metrics 24

Table 9 Caches metrics 24

Table 10 HW Bus metrics 25

- 4 of 28 -

Index of Figures:
Figure 1 Example of DSE parameters with DSE variable declaration 8

Figure 2 Example of DSE parameters without DSE variable declaration 9

Figure 3 Example of DSE parameter definition by using ExpressionContext

constraint 9

Figure 4 Example of DSE parameter with a DSE variable declaration for an

instance 9

Figure 5 Example of DSE parameter without a DSE variable declaration for an

instance 10

Figure 6 DSE parameter with MARTE Assign 10

Figure 7 Definition of default values of an explicit DSE variable 11

Figure 8 Default values of DSE variables defined in implicit style 11

Figure 9 Default values of DSE variable defined in a stereotype attribute 11

Figure 10 Definition of default values of DSE allocation parameters 12

Figure 11 DSE parameter definitions for channel types 13

Figure 12 DSE parameter definition for application components 14

Figure 13 DseRule stereotype definition 15

Figure 14 DseRule specification 16

Figure 15 DseRule specification for allocation 16

Figure 16 DseRules with logic operands 17

Figure 17 Assign Examples 19

Figure 18 DSE allocation examples 19

Figure 19 Combined DseRules 20

Figure 20 Specification of System Metrics and Requirements on them. 23

Figure 21 HW Metrics specification 25

UML/MARTE methodology for DSE

- 5 of 28 -

1 Revision History

Authors Date Notes

Pablo Peñil

Fernando Herrera

2015/05/14 First version from

CONTREX

Fernando Herrera 2015/05/02 Deep revision, adding also

on requirements, and

putting thing in coherence

with CONTREP tool.

UML/MARTE methodology for DSE

- 6 of 28 -

2 Introduction

An important modelling feature in the UML/MARTE methodology is the model

to capture all the information required to tackle a single-source Design Space

Exploration (DSE) activity. It requires the UML/MARTE model to be able to capture:

DSE parameters: to enable the capture of a design space

DSE rules: to enable a constraining and shaping of the design space

Metrics: used to define the cost functions used in the exploration proces

UML/MARTE methodology for DSE

- 7 of 28 -

3 DSE parameters

A DSE parameter specifies a variable which can adopt a value among a range or

domain along the DSE process. The DSE parameter can refer to any model attribute,

e.g. e processor frequency, a task period, typically an extra-functional attribute of the

platform or of the application.

The DSE parameters is specified through a flexible and compact MARTE

mechanism, a VSL expression. Specifically, input VSL parameters in the specification

of an attribute. The VSL expression will have the following syntax:

dir$ParameterName = DSEValueSpecification

There “dir” is of VariableDirectionKind type. Literally, the MARTE standard

states the semantics of the VariableDirectionKind type as “Nature of the created

variable: input, output, input/output. The complete semantics of this attribute depends

on the context on which the variable is created”. In the modelling methodology we can

state that a value “in” means a parameter of the model, which a DSE exploration tool

can tune. There “dir” is the direction and its value should be “in”. In this notation the

direction could be omitted, so it can be self-understood that the parameter is an input

parameter if the direction is not present.

The DSE values specification can be:

1. An expression of all the potential values as a VSL collection: ({v1,v2,v3}, unit)

2. An expression of all the potential values as a VSL interval: ([vmin…Vmax], unit)

In the case DSE parameter does not have associated a physical unit, it can be

omitted.

There is an issue with the latter style. VSL does not contemplate the specification

of a quantization step. A proposal could be to add the step annotation, of the type

([vmin…Vmax, step], unit). This involves a minor extension of VSL.

There is a special case in the definition of an interval DSE parameter definition.

As a general rule, the step is defined by a number. However, in this methodology a

different step specification is considered; the step is defined as exponent 2. In this case,

the step is defined as exp2; the values of the interval follow a geometrical progression,

i.e., the second value is “vmin x2”, and so on.

3.1 DSE variables for components

In order to define DSE parameters in components two expressive mechanism:

DSE parameter in the stereotype attributes or in ExpressionContext constraints.

UML/MARTE methodology for DSE

- 8 of 28 -

3.1.1 DSE parameters definition in the stereotype attributes

Each type of HW component is specifed by a specific MARTE stereotype

(<<HwProcessor>>, <<HwBus>>…). Each of these stereotypes, specific component

characteristics can be defined (frequency, band width…).

For this set of properties, for instance, NFP_Frequency for the processor

frequency example, would state the range of the variable (and so its contribution to the

dimension of the design space).

The DSE parameter can be annotated in two different styles:

1. explicit DSE parameter declaration:

a. $frequencyProc=({100,200,300}, MHz)

b. in$frequencyProc=([100…300,100], MHz)

c. Examples of Figure 1.

Figure 1 Example of DSE parameters with DSE variable declaration

2. implicit DSE parameter declaration:

a. ({100,200,300}, MHz) associated to a frequency attribute

b. Examples of Figure 2. In these examples, the specification of the DSE

parameters is captured by annotating the values. In these cases, the DSE

variable is inferred from the model element and the attribute to be

explorer: nameElement_attributeName. In the examples of Figure 2, the

DSE variables are “$Bus_bandwidth” and

“$RAMMemory_memorysize”. The attributes considered are: frequency,

memorySize, memoryLatency, wordWidth, bandwidth, cycle, hit, miss,

staticConsumption, acces.

UML/MARTE methodology for DSE

- 9 of 28 -

Figure 2 Example of DSE parameters without DSE variable declaration

3.1.2 DSE parameters definition in the ExpressionContext

The other modelling mechanism considered for DSE parameter definition in

components is by using a UML constraint specified by the MARTE stereotype

<<ExpressionContext>>. The ExpressionContext constraints are owned by the

component which the DSE parameters are defined for.

In this style, an explicit DSE parameter is defined in the corresponding attribute.

In the example of Figure 3, the attribute frequency is parameterized by the DSE variable

“$frequency_processor”. Then, in an ExpressionContext the potential values of this

DSE variable are specified.

Figure 3 Example of DSE parameter definition by using ExpressionContext constraint

The implicit style for this DSE variable specification is not allowed.

3.2 DSE variables for instances

 With the previous DSE variables specification styles, all component attributes

can be parameterized. However, fixing a value on a component parameter fixes the

same value on all the instances of the component. Therefore, an instance-level

parameterization mechanism is necessary for enabling a more flexible DSE.

The mechanism proposed is to use a UML constraint and link it to the UML

property which represents the component instance. The UML constraint is then

stereotyped with <<ExpressionContext>>, which enables the capture of the VSL

expression.

Again, two different types of DSE variable specification can be considered; the

first one a DSE variable is explicitly declared as can be seen in Figure 4.

Figure 4 Example of DSE parameter with a DSE variable declaration for an instance

UML/MARTE methodology for DSE

- 10 of 28 -

The second style only the name of the attribute to be explorer is annotated as can

be seen in Figure 5.

Figure 5 Example of DSE parameter without a DSE variable declaration for an instance

3.3 DSE Allocation variables

Another different DSE parameter enables to capture DSE allocations in order to

explore different application-platform resources mapping. This is captured in a UML

comment specified by the MARTE stereotype <<Assign>>. In the attribute from, the set

of application or memory spaces elements to explore their mapping are attached; in the

attribute to, the set of HW resources used as mapping targets are attached.

Figure 6 DSE parameter with MARTE Assign

An application or memory space can only be included in a from attribute once in

all Assigns.

3.4 Default Values

In addition to the previous DSE expressions, in some cases, the designer can

specify a default value of a DSE variable. This can be useful for system simulation in

cases where the designer wants to simulate the system without considering the complete

DSE process.

The way to define default values depends on the style used for defining the DSE

variable.

3.4.1 Default Values for DSE variable in components

The System componente of the ApplicationView can have can have associated all

the previous modelling variables.

As was describe in the section 3.1.1, the DSE variables of a component can be

done in two ways: in the stereotype attributes and annotated in an ExpresionContext

constraint.

In the first case, the default values are annotated in a UML constraint that must be

owned by the component. There are another annotation styles:

1. explicit DSE parameter declaration:

UML/MARTE methodology for DSE

- 11 of 28 -

a. The default values are annotated in UML constraints according to the

declaration of the DSE parameter: $nameDSEVariable = (value, unit).

Figure 7 shows examples of default DSE variables specification.

Figure 7 Definition of default values of an explicit DSE variable

2. implicit DSE parameter declaration:

a. The default values are annotated in UML constraints according to the

declaration of the DSE parameter: $nameAtribute = (value, unit). Figure

8 shows examples of default DSE variables specification.

Figure 8 Default values of DSE variables defined in implicit style

A same UML constraint can be used for defining all the default values of a

component.

In this case, each default value is separated by semicolon.

For the other DSE variable definition way, (using ExpressionContext constraint),

the default value is annotated in the attribute of the stereotype where the DSE variable is

defined (Figure 9).

Figure 9 Default values of DSE variable defined in a stereotype attribute

3.4.2 Default Values for DSE variable in instances

In the case of DSE parameter specification for instances, in the same UML

constraint where the DSE parameter is defined, the default values should be annotated

(Figure 4 and Figure 5): annotating the name of the DSE variable and its value (Figure

4) or annotating the name of the attribute and its value (Figure 5).

A special case is the default value specification of the allocation DSE parameters

(defined with Assign comments). An UML constraint owned by the System component

of the ArchitecturalView is used. The notation to use is

UML/MARTE methodology for DSE

- 12 of 28 -

$allocation=(to1, from1); $allocation=(to2, from2);…

Where toi are the names of the HW resources where the fromi elements are

mapped.

The UML constraint is associated to the Assign comment by using a UML link.

There should be so many allocation definitions as elements in the attribute to.

Figure 10 Definition of default values of DSE allocation parameters

3.5 DSE variables for concurrency exploration

At PIM level, the concurrency structure of the application can be explored. For

that purpose, two different types of attributes are considered: attributes associated to

communicating channels and attributes associated to application components.

3.5.1 DSE variables for channel types Default Values for DSE variable in instances

The channels that connect the application components are specified by channel

types defined in the CommunicationView. These channel types are modelled as

component specified by the MARTE stereotype <<CommunicationMedia>>. Then, a

set of properties can be attached to the CommunicationMedia by using the stereotypes

<<ChannelTypeSpecification>> and <<StorageResource>>.

The properties that ChannelTypeSpecification captures are

blockingFunctionDispatching, blockingFunctionReturn, priority, timeout and ordering.

The channel types can have associated a storing capacity which is captured

through the resMult attribute of the MARTE stereotype <<StorageResource>>.

The designer can explorer the potential values of these properties in order to

evaluate the impact in the performance.

In order to define DSE parameters to the previous attributes in a component a

different technique should be used. In this case, the DSE parameters associated to the

component are captured in a UML constraint specified by the MARTE stereotype

<<ExpressionContext>> instead of capturing the DSE on the attributes of the

stereotypes, that is, using the modelling technique for specifying DSE parameters of

instances. This is due to the different Boolean attributes (blockingFunctionDispatching,

blockingFunctionReturn and ordering) that can be explored. In this case, the default

values of the DSE parameters are defined by the values of the stereotypes attributes,

instead of using a constraint.

UML/MARTE methodology for DSE

- 13 of 28 -

So, an ExpressionContext constraint is associated to the corresponding

CommunicationMedia component: the ExpressionContext constraint is owned by the

CommunicationMedia component (Figure 11).

Then, all the previous properties considered for the channel type specifications

should be annotated in the ExpressionContext constraint. The properties no annotated, a

default value will be considered according to the values captured in the stereotypes

applied on the CommunicationMedia (Figure 11). These default values of the DSE

parameters are annotated in the different attributes of the

<<ChannelTypeSpecification>> and <<StorageResource>> stereotype applied on the

CommunicationMedia component (Figure 11).

The DSE parameters of the properties blockingFunctionDispatching,

blockingFunctionReturn and ordering are defined as a collection “({true, false})”

(Figure 11).

The rest of properties can be defined as a collection or interval DSE parameter.

Figure 11 DSE parameter definitions for channel types

3.5.2 DSE variables of application component

Another attribute has can be considered for the concurrency structure exploration.

The attribute srPoolSize defines the maximum number of schedulable resources to

attend to the request for the services provided by the RtUnit.

Again, the DSE parameter is defined in a <<ExpressionContext>> constraint

owned by the RtUnit application component. Then, the DSE variable is specified as

“srPoolSize”. The potential values are captured as a collection or interval. The default

value of the DSE parameter is captured in the corresponding attribute of the stereotype

<<RtUnit>> (Figure 12).

UML/MARTE methodology for DSE

- 14 of 28 -

Figure 12 DSE parameter definition for application components

UML/MARTE methodology for DSE

- 15 of 28 -

4 DseRule

The stereotype <<DseRule>> is used to limit the possible design space which

results from the Cartesian product of each design sub-space stated by each DSE

parameter. Such a product can easily derive into an exploiting design space, once the

user adds DSE parameters. A DSE rule states conditions to consider a combination of

values as a solution to be explored (so part of the input design space). In other words,

they are a-priori conditions (independent on the solution performance) con consider a

solution of interest.

A DSE rule is specified through a UML constraint, with the <<DseRule>>

stereotype.

<<stereotype>>

DseRule

parameters: String [1..*]

expression: String [1]

Figure 13 DseRule stereotype definition

4.1 Definition of DseRule parameters
In the parameters attribute the DSE parameters that are involved in the rule are

stated. The definition of the DSE parameter is:

dseParameterName=(nameModelElement, identifier)

According to the style selected for the specification of the DSE variables, the

value to be annotated in the “identifier” is different. In the case of explicit DSE

variables declaration, the definition of the rule parameters should be:

 dse1=(Processor2, processor2_frequency)

 dse2=(InstructionCacheARM9, instrCacheSize)

Where “identifier” denotes the specific name of the DSE variable to be annotated.

In the case of explicit DSE variable declaration, the “identifier” denotes the

attribute name:

 dse1= (proc3,frequency)

 dse2=(DataCacheARM9, memorySize)

Figure 14 shows the declaration of two DSE rule parameters (“dse1” and “dse2”);

“dse1” is related to the DSE parameter “processor2_frequency” and “dse2” with the

memory size of the cache memory “DataCacheARM9”.

UML/MARTE methodology for DSE

- 16 of 28 -

Figure 14 DseRule specification

In the case of DSE rule where DSE allocation variables are involved, the way to

specify the rule is:

dseParameterName=(parameterName, allocation)

Where “toNameElement” identifies a model element included in the to attribute of

a Assign comment. Examples of that:

 alloc1= (appli2,allocation)

 alloc2=(appli3,allocation)

Figure 15 DseRule specification for allocation

4.2 Definition of DseRule expression

In the expression attribute there is annotated the specific DSE rule composed of

the parameters associated by means of operands.

The style to annotate the component rules (compoRule) is expressing a logic

operand, the DSE parameter name and a value:

compoRule=(dseName[logicOperand]Value)

Where:

 dseName: name of DSE parameter defined in the parameters attribute of

DseRule

 logic operand: see Table 1

 value: value of the variable

The logic operands are shown in Table 1.

Logic operands annotation

greater than >

greater or equal than >=

less than <

less or equal than <=

UML/MARTE methodology for DSE

- 17 of 28 -

equal ==

not equal !=

Table 1 Logic operands

The examples of Figure 16 shows rules with logic operands.

Figure 16 DseRules with logic operands

There is a constraint in the rule annotation: there are not allowed internal spaces

among the different elements that composed the component rule.

1. (ds1<=300): OK.

2. (ds1 <= 300): WRONG.

Additionally, the arguments of the DSE rules can be specified by adding algebraic

operations. The notation of these kind of operands should be:

((dseName[algebraicOperator]value)[logicOperand](value1[algebraicOperator]value2))

The algebraic operands are shown in Table 2.

Algebraic operands

+

*

-

/

Table 2 Algebraic operands

An example of rule with algebraic operands:

 ((dse1-25)==300)

 ((dse1*2)==350)

4.2.1 Conditional structure

A conditional rule has the key words shown in Table 3. The way of annotating a

conditional rule is:

if[spa](compoRule 1)[spa]then[spa](compoRule2)[spa]else[spa](compoRule3)

Example of conditional rule:

if (dse1>200) then (dse2==300) else (dse3==350)

UML/MARTE methodology for DSE

- 18 of 28 -

Note that among the key words of conditional rules and the operands of the DSE

rule it is required to have a space ([spa]):

1. if (dse1!=150) then (dse2>=200). OK.

2. if (dse1==200) then (dse2>=200) else (dse2<200). OK.

3. if(dse1!=150)then(dse2>=200). WRONG.

4. if(dse1==200)then(dse2>=200)else(dse2<200). WRONG.

It is not allowed nested conditional structures.

Decision structure annotation

conditional structure if…then…else

Table 3 Decision structure

4.2.2 Or logic operand

The way for annotating a DSE rule with or logical structure is:

(compoRule1)[spa]or[spa](compoRule2)[spa]or[spa](compoRule3)…

An example of or logic structure:

(dse1>100) or (dse4==100) or (dse2!=300)

Logic structures annotation

and and … and …

or or …or…

Table 4 Logic structures

4.2.3 And logic operand

The way for annotating a DSE rule with and logical structure:

(compoRule1)[spa]and[spa](compoRule2)[spa]and[spa](compoRule3)…

Example of and logic operand:

(dse2<500) and (dse3>=150) and (dse4==100)

4.2.4 Combined rules

The methodology enables the rule specification where the conditional structure

and the or logic structure and the and logic structure can be combined. This kind of

rules combines conditional structures with:

1. and logic structures

if ((dse2>200) and (dse3==250)) then (dse4==300))

2. or logic structures

if ((dse1>=200) or (dse2!=250) or (dse4<400)) then (dse4==200))

UML/MARTE methodology for DSE

- 19 of 28 -

4.2.5 Allocation DSE rule

Another kind of DSE rules are that make reference to the allocation assignment of

the application entities to the platform resources. It is feasible that during the design

exploration process, designer does not cover all the allocation possibilities and wants to

restrict them. For that purpose, the methodology provides the allocation DSE rules.

Allocation operands annotation

Applied to ->

Not applied to !->

Table 5 Allocation operands

Table 5 shows the operands used for specify this allocation DSE rules. The

allocation operand -> involves that an application is applied to a specific platform

resource. The allocation operand !-> involves that an application can not be applied to a

specific platform resource.

The way to annotate this kind of rules is:

(applicationName[allocationoperand]resourceName)

where:

 applicationName: name of the application entity specified in the attribute

“from” of a <<Assing>> comment.

 allocationOperand: Table 5.

 resourceName: name of the platform resource specified in the attribute “to” of

a <<Assign>> comment.

Figure 17 Assign Examples

Considering the DSE allocation parameters shown in Figure 17, examples of

allocation DSE rule are shown in Figure 18.

Figure 18 DSE allocation examples

The allocation DSE rules can be combined with the previous DSE rules; for

instance with a conditional rule:

if (alloc1->process1) then (alloc2!->process2) else (alloc2->process3)

UML/MARTE methodology for DSE

- 20 of 28 -

Another combination of the allocation DSE parameters with other different DSE

parameters (Figure 19). In this case, these last ones have to be specified as was

previously defined:

if ((dse1>100) and (appli2!->proc2)) then (appli2->proc3) else (appli2-> proc3)

Figure 19 Combined DseRules

UML/MARTE methodology for DSE

- 21 of 28 -

UML/MARTE methodology for DSE

- 22 of 28 -

5 Metrics and Requirements

 DSE requires the definition of the metrics that are considered in the

quantification of the cost or merit of every assessed solution (also called configuration).

A DSE process can use one or more cost functions. The descrition of these cost

functions rely on the metrics. In the simplest case, a cost function consists in the metric

itself (c(x)=x, being “c(x)” the cost function and “x” the metric). Metrics are typically

performance metrics, e.g. total energy consumed, utilization of one processor.

5.1 Metrics modeling
Performance metrics are captured by using UML constraints decorated with

<<ExpressionContext >> MARTE stereotype. The specification of the UML constrain

shall contain a VSL expression which describes the metric by means of the following

syntax:

out$MetricName (Unit, est)

The VSL expression captures a output parameter, which in this methodology

states that the value of the parameters is a result of an analysis, simulation,

measurement, etc, and so, it is not an annotation in the model. The “est” value, states

that it is a value obtained from an analysis, e.g. produced by performance simulation

tool like VIPPE.

5.2 Requirements modeling
The modeling methodology enables to describe also requirements. A requirement

is a binary logic expression imposing some condition on one or more metrics.

As the metrics, requirements are expressed within the UML constraints decorated

with <<ExpressionContext >> MARTE stereotype. Actually, the metrics used in the

expression act as a metrics declarations.

For instance:

out$MetricName (Unit, est) < value

states that the metric “MetricName” has to be estimated and that the value of the

simulation should be lesser than the value. The logical operators of Table 1 can be used.

The left hand side of the expression can be an arithmetic expression on declared

metrics. For instance:

out$MetricName (Unit, est) + out$MetricName2 (Unit, est) < value

The arithmetic operations of Table 2 can be used

UML/MARTE methodology for DSE

- 23 of 28 -

5.3 System Metrics
System metrics are global, that is, applicable to and accounted considering the

overall system. System metrics are, therefore, independent from the specific application

and platform architecture.

System metrics currently supported by the methodology are shown in Table 6.

MetricName Type

latency Nfp_Time

energy Nfp_Energy

power Nfp_Power

instruction Nfp_Integer

Table 6 System metrics

The constraint containing the system metric has to be owned by the model. Apart

from that, any position in the model is allowed. However, it is recommended that the

constraint either is owned by the System component included in the ArchitecturalView

or associated to the System component (as exemplified in Figure 20) by means of a

UML link. Both things would be also possible.

Figure 20 Specification of System Metrics and Requirements on them.

As Figure 20 shows, it is possible to capture more than one metrics&requirements

in the same constraint. For that, metrics&expressions are separated by semicolons (

“;”).A system metric is not associated to a component for which an internal metric, i.e. a

system dependent metric, is defined, e.g. a processor or a bus.

5.4 System Dependent Metrics
System dependent metrics are associated to either application elements

(application metrics) or platform elements (platform metrics). Therefore, the amount of

them, and their names depend on the specificities of the model and the names assigned

to its elements.

UML/MARTE methodology for DSE

- 24 of 28 -

5.5 Platform Metrics
The methodology supports metrics for different types of elements of the hardware

platform.

For the modelling, the ExpressionContext constraint has to be associated to the

element instance by means of a UML link.

Currently, support for modelling HW platform metrics referring processing

elements, L1 cache memories and buses is given.

The metrics that can be reported for each type of element are reflected in Table 7

(for processors), in Table 8 (for L1 caches) and in Table 9 (for buses).

Metrics Type

load %

instructionsExecuted Integer

energy Nfp_Energy

power Nfp_Power

runningTime Nfp_Time

idleTime Nfp_Time

Table 7 Processor metrics.

Metrics Type

misses Integer

instructionCacheEnergy Nfp_Energy

instructionCachePower Nfp_Power

totalInstructionMissTransfers Integer

dataCacheHits Integer

dataCacheMisses Integer

dataCacheWriteBacks Integer

dataCacheEnergy Nfp_Energy

dataCachePower Nfp_Power

totalDataMissTransfers Integer

Table 8 Caches metrics

Metrics Type

UML/MARTE methodology for DSE

- 25 of 28 -

accessTime Nfp_Time

transfers Nfp_DataSize

Table 9 HW Bus metrics

The L1 cache related metrics is a special case. The ExpressionContext constraint

has to be associated to the processor that owns the L1 cache.

Similarly as for the system metrics case, an ExpressionContext constraint can

specify the report of several element related metrics. Again, metric expressions have to

be separated by semicolons. Figure 21 provides several examples on how to describe

output performance metrics for the HW platform.

Figure 21 HW Metrics specification

Instances of the HW platform architecture are present in the System component of

the ArchitecturalView, and so the ExpressionContext constraints containing the metric

specifications shall be located there.

UML/MARTE methodology for DSE

- 26 of 28 -

UML/MARTE methodology for DSE

- 27 of 28 -

6 Annex I: Methodology Stereotypes

Stereotype Attributes Profile

ExpressionContext MARTE

DSERule
parameters: String [1..*]

expression: String [1] ESSYN

Assign
to: Element [1..*]

from: Element [1..*] MARTE

UML/MARTE methodology for DSE

- 28 of 28 -

