

UML/MARTE

Methodology

for Synthesis

April, 2015

Microelectronics Engineering Group

TEISA Dpt. , University of Cantabria

Authors: P. Peñil

- 2 of 12 -

Index:

1 INTRODUCTION.. 4

2 MODEL SPECIFICATION ... 4

2.1 Data Size .. 4

2.2 Refinement of files .. 4

2.3 Channels .. 5

2.4 Application components: compiler, flags and APIs ... 5
2.4.1 System component .. 6
2.4.2 Aplication component ... 6

2.5 HW Processor variables ... 7
2.5.1 DSP processors .. 7
2.5.2 GPU processors ... 8
2.5.3 CPU co-processors ... 9

2.6 Multiple HW resources allocation ... 9

3 ANNEX I: METHODOLOGY STEREOTYPES 11

4 ANNEXO II: METHODOLOGY ENUMERATIONS 11

- 3 of 12 -

Index of Figures:
Figure 1 Refinement of Files 5

Figure 2 $CFLAGs for native compilation 6

Figure 3 Compiler variable 6

Figure 4 HwProcessor compilers 7

Figure 67 Memory partition allocations to DSP 8

Figure 68 Application component allocation to a memory partition 8

Figure 70 Application component instance for GPU mapping 9

Figure 5 HW Specification of a CortexA processor 9

Figure 68 Application component allocation to a memory partition 9

Figure 69 Multi HwResources allocation 10

UML/MARTE methodology for synthesis

- 4 of 12 -

1 Introduction

The UML/MARTE methodology enables to establish a synthesis design flow that,

taking as starting point, the SW to be executed in a specific HW/SW platform can be

done. For that purpose, the UML/MARTE model should include additional information.

This information is related to compilers, compilation and link flags, files for specific

HW resources… In that way, a toolkit can obtain all the required SW infrastructure

(makefiles, SW of deployment) for the system implementation in a target board.

2 Model specification

2.1 Data Size

All the data includding the DataView modelling must include the size in bytes.

This value is captured in the attribute size of the stereotype <<DataSpecification>>.

2.2 Refinement of files

Two different kinds of File artifacts can be defined in the FunctionalView: the

artifacts only specified by the stereotype <<File>> and the artifacts specified by both

stereotypes, <<File>> and <<ApplicationFile>>. In the first case, these files represent

the functionality provided in the initial stage of the design flow. The combination of the

stereotypes <<File>> and <<ApplicationFile>> means that the functionality of the

corresponding artifacts has been refined for executing on a specific HW resource or that

it has been modified by an external tool or by the user. In addition, the latter files can

represent different file structures used for the different stages of the design process. In

any case, the model should capture the relationship between the initial files and the

refined files. This file refinement is captured by a UML Abstraction relationship

between a file with a set of files. This UML abstraction is specified by the UML

standard stereotype <<refine>>, as can be seen in Figure 1. Only one refined file is

allowed for each design stage. There is one exception; when two files contain optimized

code for two different, specific HW resource. For instance, two different

implementations, one for a NEON execution and other one for a DSP are shown in

Figure 1. Depending on the HW resource where the application is mapped, the code

generation annotates the correct file.

UML/MARTE methodology for synthesis

- 5 of 12 -

Figure 1 Refinement of Files

2.3 Channels

The channels have information about the way they should be implemented. This

information is captured in attributes associated to the stereotype <<Channel>>. The

attribute communicationEngine is an enumeration with a set of communication libraries

independent of the platform. The possible values are MCAPI, OpenMP, OPenStream,

TCP/IP and default are;

 MCAPI is a standard communication API for distributed embedded

systems.

 OpenMP is a library for multi-processor programming of shared

memories.

 OpenStream is a data-flow extension of OpenMP to express dynamic

dependent tasks.

 TCP/IP protocol of data transmission.

 undef means the previous communication mechanism is not used.

A second attribute of the Channel is communicationOSService. This attribute is an

enumeration that denotes different communication mechanisms provided by an OS. The

possible values are FIFO channels, sockets, message queues, shared memories, files.

When the values of the attributes communicationEngine and

communicationOSService are undef and default respectively, it means the

communication mechanism implemented for a channel derives from the OS where the

interconnected application components are mapped. The attribute that defines this

implementation mechanism is interProcessCommunication.

2.4 Application components: compiler, flags and APIs

The application structure can have aasocited information for enabling the

compilation and generation of the executable code, abstracting a specific HW/SW

platform captured in the ArquitecturalView. For that purpose, additional modelling

variables should be considered:

1. cc_compiler: specifies the C compiler.

2. cxx_compiler: specifies the C++ compiler.

UML/MARTE methodology for synthesis

- 6 of 12 -

3. path_compiler: specifies the path where the compiler (C or C++) is

allocated.

4. CFLAG: defines the compilation flags

5. LFLAG: defines the linking flags.

6. ImplementationAPI: denotes which API should be used in the sysnthesis

process for implementing the component.

2.4.1 System component

The System componente of the ApplicationView can have can have associated all

the previous modelling variables.

CFLAGS and LFLAGS

The model variables associated with the System component of the

ApplicationView can include the set of CFLAGs and LFLAGS required for the native

compilation of the application (Figure 2).

Figure 2 $CFLAGs for native compilation

Compiler and Compiler path

The model variables associated with the System component of the

ApplicationView can include the compiler (for C or C++) required for native

compilation and the path where this compiler is allocated (Figure 3). By default, gcc

and g++ are the compilers considered for compilation.

 Figure 3 Compiler variable

2.4.2 Aplication component

The application componets can have associated the modeling variables CFLAG

and LFLAG. In that way, the designer can captured specific flags for a specific

component that are added to the flags asocited to the System component.

UML/MARTE methodology for synthesis

- 7 of 12 -

In addition to that, a specific API for its synthesis implementation can specify for

the application instancies. The modelling variable $implementationAPI is used for that

purpose; APIs as OpenMP and MCAPI. In the case this modelling variable is not

specifed, a default API is used, which is POSIX.

The variables are annotated in a UML constraint that is owned by the component

where the application instance is created; in the System component or in a Subsystem

component. The, the UML constraint is associated to the application instance by a link

as in the previous examples.

2.5 HW Processor variables

Some additional model variables have to be defined for specifying some required

platform characteristics. These variables are used for specifying the C and C++

compilers and the different LFLAGs and CFLAGs in order to implement the make files

for the system cross compilation in an specific HW platform. These variables are:

 $cc_compiler: defines the name of the cross compiler for C.

 $cxx_compiler: defines the name of the cross compiler for C++.

 $path_compiler: defines the path where the cross compiler is

allocated.

 $CFLAG: defines the compilation flags for the cross compilation.

 $LFLAG: defines the linking flags for the cross compilation.

These variables are specified in a UML constraint (Figure 4). This constraint is owned

by the HW Processor (the attribute “Context” has to contain the HWProcessor

component to be constrained) and associated with a HwProcessor component by uisng a

UML link.

Figure 4 HwProcessor compilers

2.5.1 DSP processors

This value denotes that the processor is a DSP (Digital Signal Processor). The Eclipse

plug-in generates the entire code infrastructure to execute an application component in

this HW resource.

UML/MARTE methodology for synthesis

- 8 of 12 -

2.5.1.1 Allocation on DSP

When the the memory allocation is done on a DSP, the allocation is captured by means

of a UML abstraction specified by the MARTE stereotype <<Allocate>>. However, the

mapping is captured directly from MemoryPartition instance to the DSP resource,

without any OS in the middle (Figure 5).

Figure 5 Memory partition allocations to DSP

The memory partition instance mapped onto the DSP HW resource has a

modelling restriction; only one application component can be allocated to a memory

partition that is mapped onto a DSP (Figure 5 and Figure 9).

Figure 6 Application component allocation to a memory partition

2.5.2 GPU processors

This value denotes that the processor is a GPU (Graphical Processing Unit). The Eclipse

plug-in generates the entire code infrastructure to execute functions in this HW

resource.

2.5.2.1 Application Allocation to GPU

The application components are mapped onto memory partitions and then, these

memory partitions are mapped onto HW/SW resources of the platform. A special case

of application mapping is the mapping onto GPU HW resources.

In this specific case, the element mapped on the GPU resource is the application

instance as Figure 7 shows.

UML/MARTE methodology for synthesis

- 9 of 12 -

Figure 7 Application component instance for GPU mapping

2.5.3 CPU co-processors

CPUs may have associated co-processors which may affect the compilation process. So,

the “CortexA” processor has an associated NEON co-processor

(www.arm.com/products/processors/technologies/neon.php). In the case that a

HwProcessor has an associated HwISA specified as “CortexA?” (where the “?”

represents any possible value, Figure 8), the eclipse plug-in generates the entire

infrastructure for using the NEON co-processor to execute functionality. The designer

can select which application components should be executed in the NEON co-processor.

Figure 8 HW Specification of a CortexA processor

Figure 9 Application component allocation to a memory partition

2.5.3.1 Processor identifier

In some cases, specifically for defining the affinity of a thread, an identifier

should label the processor instances of the platform. For that purpose, in the attribute

“Default Value” of the processor instance, associate a LiteralInteger. In this element, the

integer identifier is annotated.

2.6 Multiple HW resources allocation

The modelling methodology enables multiple allocations of the memory spaces in

different HW resources of the platform as can ben seen in Figure 10.

http://www.arm.com/products/processors/technologies/neon.php

UML/MARTE methodology for synthesis

- 10 of 12 -

Figure 10 Multi HwResources allocation

From, these multiple allocations, the adequcete code is synthesized in order to

enable the execution on both HW resources.

UML/MARTE methodology for synthesis

- 11 of 12 -

3 Annex I: Methodology Stereotypes

Stereotype Attributes Profile

DataSpecification size:NFP_Data [1] ESSYN

Channel communicationEngine:

CommunicationEngineKind[1]

communicationOSService:

communicationOSServiceKind [1]

ESSYN

ApplicationFile implementation: String [0..1] ESSYN

OS interProcessCommunication:

InterProcessCommunicationMechanism [1]

ESSYN

Refine UML Standard

4 Annexo II: Methodology Enumerations

Enumeration Values Profile

CommunicationEngineKind undef

default

MCAPI

OPenMP

OpenStream

TCP/IP

ESSYN

CommunicationOSServiceKind undef

FIFO

Socket

messgeQueue

SharedMemory

File

ESSYN

InterProcessCommunicationMechanism FIFO

Socket

ESSYN

UML/MARTE methodology for synthesis

- 12 of 12 -

MessageQueue

SharedMemory

File

