

 Page 1

Interoperability between

UML/MARTE Platform Independent

Models and Synchronous Data flows

in ForSyDe

Microelectronics Engineering Group

of the
University of Cantabria

Authors: F. Herrera, P. Peñil, E. Villar

Date: 2015, April

 Page 2

1 Introduction

The CONTREX UML/MARTE modelling methodology enables the description of the whole

multicore MPSoC of a System-of-Systems (considering nodes connected through a network).

The modelling methodology enables the building of models which serve as entry point for

software synthesis for MPSoC platforms and a simulation-based DSE flows.

A CONTREX UML/MARTE model consists of an application or platform independent model

(PIM) and a platform model. Specifically, in this work we focus on the PIM description and

on its relation to formally-based modelling methods. In the CONTREX UML/MARTE

methodology, the PIM is a component-based model, i.e. the functionality is encapsulated

within components, which enables SW reusability. Moreover, the model is annotated with a

rich variety of attributes with a standard semantics, encompassed by methodology-based

assumptions, which enable to capture many relevant aspects of the PIM semantics.

In this document we tackle the connection of such CONTREX UML/MARTE PIM with

formally based modelling methodologies, specifically the ForSyDe methodology. This is very

relevant in the context of mixed-criticality systems, where at least some part of the system is

tied to strict requirements, not only on performance, but also on predictability. It imposes

constraints both on the platform and also at higher levels, i.e. the PIM. In effect, a constraint

on the platform might be of the form “do not allow cache memories”, so the analysis of worst-

case execution times is feasible. However, as mentioned, the predictability challenge also

reaches the application-level, with ever growing complexities, and many potential issues line

non-determinism, deadlock, unboundeness, etc, difficult to solve without a disciplined

application modelling. Formal-based modelling based on Models-of-Computation (MoC)

theory helps on that purpose, since it defines modelling elements, modelling rules and

assumptions, which help a modeler to build models enabling correctness-by-construction and

more analyzability.

Therefore, this work tackles how the CONTREX UML/MARTE methodology can be

restricted in order to satisfy the behavioral and communication restrictions imposed by

specific MoCs. This will enable to build models with parts endorsed with such formal ground.

Specifically, in CONTREX we focus on the relation and integration with ForSyDe. ForSyDe

support several models of computation and heterogeneous models. Such models can be

executed to perform functional validation. Moreover, ForSyDe models are the entry point to

an analytical Design Space Exploration methodology and to tools for automatically target

GPGPUs and NoC-based implementations (from SR MoC-based models).

Therefore, the interoperability of the modelling methodologies will enable the application and

cooperation of their respective tool chains enabled by each modelling methodology. From the

CONTREX UML/MARTE perspective, the main benefit has been already mentioned, of

having parts of the model formally supported, with well sounded semantics and ready-to-use

analysis to guarantee important properties, such as functional determinism, continuity, etc.

From the ForSyDe side, the advantage is to have a link with a methodology which can grow

the model with more generic parts not tied to MoC rules, and the possibility to exploit the

simulation-based performance analysis and software synthesis tool-chains.

 Page 3

1.1 Description of the PIM in the CONTREX UML/MARTE
methodology

The purpose of this section is to provide a compact overview of the specification of the

Platform Independent Model in the CONTREX UML/MARTE modelling methodology. More

specifically, of the PIM model which concerns to the relation with ForSyDe. For it, the

overview provides an abstract view, avoiding details referring to the use of UML, and of the

MARTE and CONTREX specific profiles. Similarly, the discussion will focus on the MoC

concepts supported by ForSyDe, rather on details proper of any of the ForSyDe flavours (in

XML, in SystemC and in Haskell).

Figure 1 sketches the type of component based model supported and the primary information

which can be annotated and associated to it. The sketch focuses on the most relevant

elements, specially concerning to the executive semantics.

The CONTREX PIM model is structured as a set of communicating components.

Components communicate among each other by providing and requiring functionalities. Such

communication is performed only via component ports. A component which implements a

functionality can make it available to another component by encapsulating the function

prototype within a provided client-server interface and making it public to other components

through to provided port (i.e., a port with a provided interface). Similarly, components

requiring such services will declare a port with matching required client-server interface. This

way, components communicate among them only through their ports.

A methodological assumption is that all the functions of an interface will have the character of

the interface (either provided or required). In other words, an interface cannot be used to

contain both provided and required methods.

Additionally, an interface operation can be of any of the following three types:

 Sequential: No concurrency management mechanism is associated with the operation

and, therefore, concurrency conflicts may occur. Instances that invoke the operation

need to coordinate so that only one invocation to a target on any operation occurs at

once.

 Guarded: Multiple invocations of a behavioural feature may occur simultaneously to

one instance, but only one is allowed to commence. The others are blocked until the

performance of the currently executing operation is complete. It is the responsibility of

the system designer to ensure that deadlocks do not occur due to simultaneous blocks.

 Parallel: Multiple invocations of a behavioural feature may occur simultaneously to

one instance and all of them may proceed concurrently.

The methodology assumes that all the interface operations are of the same type.

The model supports structural hierarchy once a component instance can be encapsulated

within parent components. Eventually, a model could be transformed to a flattened model,

semantically equivalent, and where all the components were “leaf components”.

 Page 4

The leaf components are components stereotyped as RtUnits (referred to simply as “RtUnit”

in this summary) encapsulate functionality. The model states nothing about the inner structure

of the functionality. For instance, both sequential and object-based code can capture the

functionality. However, a set of attributes enable to state its due semantics, and how RtUnits

interact with other RtUnits via port-to-port communication.

The relevant attributes stating on the RtUnit semantics are the following:

 isDynamic:

o If true, it denotes that the real-time unit creates dynamically the

schedulable resource required to execute its services.

o If false, the real-time unit owns a pool of schedulable resources to

execute its services.

 srPoolSize: Size of the schedulable resource pool of a real-time unit. It states the

capacity of the RtUnit in terms of maximum amount of schedulable resources.

 srPoolPolicy: Kind of pool policy adopted by a real-time unit. The possible

values in MARTE are:

o infiniteWait: If the pool is empty, the real-time unit waits indefinitely

until a schedulable resource will be released.

o timedWait: If the pool is empty, the real-time unit waits for bound time

until a schedulable resource will be released. At the end of the waiting

time, if no schedulable resource have released, an exception is raised.

o Dynamic: If the pool is empty, the real-time unit creates a new

schedulable resource and adds it to the pool.

o Exception: If the pool is empty, the real-time unit raise an exception.

o Other

 The isMain attribute can be set true to denote the main application. Default false.

The methodology enables a rich description of the component communication.

In the simplest case, a simple port-to-port connection can be specified. For such a case, a

remote procedure call (RPC) applies. That is, the RtUnit with the required interface (client

RtUnit) is the one which calls the service, i.e. a function of the required interface, which is

implemented and executed by the RtUnit associated to the provided interface port (server

RtUnit). The client RtUnit is assumed to be blocked while the server RtUnit receives and

process the service requests, and until it returns and notifies its completion to the caller

RtUnit.

In order to support additional communication and synchronization mechanisms, the port-to-

port connection can be specified as a channel. In such a case, the following attributes serve to

modulate the communication semantics:

 Page 5

Figure 1 Sketch of the CONTREX UML/MARTE PIM model and the main attributes defining the

semantics.

 blockingFunctionDispatching: States if the client RtUnit has to remain blocked until

either the server starts to attends the service (dispatching) or the call is stored in

channel (when the channel has capability at least for a call).

 blockingFunctionReturn: States if the client RtUnit has to remain blocked until the

server response (including the return values).

 priority: states the priority of the client call with regard to the server. Used by the

server to decide which client to attend first.

 timeOut: maximum time that a client shall be waiting for a function´s call response.

 Ordering: states if the channel has to deal with the call as an ordered set and so has to

preserve an order in the server response according to the calling order.

In addition, the channel can be also stereotyped such a storage resource capability (result

attribute) can be assigned. This storage resource capability states the buffering capability of

the channel in terms of maximum amount of function call requests.

 f1

 f2…

 fn

function

 in

 out…

 return

f1

Shared

Variable

DataType

 pointer

 size

(provided) (required)

Sequential/guarded/parallel

isDynamic

isMain

srPoolsize

srPoolPolicy

RtUnit

RtUnit

RtUnit
RtUnit

RtUnit

RtUnit

blockingFunctionDispatching

blockingFunctionReturn

priority

timeOut

ordering

resMult

isProtected

<channel,

StorageResource>

Client-Server Interface

 f2…

 fn

 Page 6

The communication semantics associated to the channel is summarized in the Table 1
1
. Table

1 reflects the communication semantics as a result of four factors. The two former are two

static attributes of the channel of the model on the two first columns:

1. Value of the blockingFunctionDispatching attribute.

2. Value of the blockingFunctionReturn attribute.

The other two columns reflect the state of the channel and of the called RtUnit which

implements the called function:

3. Room for a Call in Buffer: States if there is room for storing a function call at a

given time during the execution. Notice that this depends on the size of the

buffering capability of the channel (resMult), among other factors.

4. Schedulable Resource Available for the call: the RtUnit implementing the called

function can allocate immediately one schedulable resource (thread) in order to

attend to service request. Notice that, among other factors, this depends on the

srPoolSize attribute value and on the state of the called RtUnit. Specifically, the

number of schedulable resources (threads) available must be strictly bigger than

the number of pending calls in the buffer, assuming that the pending calls have

equal or bigger priority. Then, the RtUnit can use the schedulable resources

available for the pending calls and use at least one schedulable resource more for

attending the new call.

Therefore, depending on the value of the two first attributes, and on the two state values

reflected in columns 3 and 4, the behaviour of the requester (client) RtUnit, of the channel and

of the server RtUnit are stated:

5. Store: States if the function call request will be stored or not in the channel at the

moment of the call.

6. Block on call: States if the caller (client) RtUnit will be blocked.

7. Block on return: States if the caller (client) RtUnit will be blocked.

8. Exec: States if the called function will be executed or not, and in the former

case, if its execution will be delayed until schedulable resources of the called

RtUnit are available.

 Static properties Run-Time State BEHAVIOUR (Semantics)

 Of

channel

Of

channel

Of

Called

RtUnit

channel Caller

(Client)

RtUnit

Called

(Server)

RtUnit

1
 Notice that Table 1 covers part of the attributes. Considering all the attributes and their possible values

(complete semantics description) would lead to a high amount of combinations. The relation of the methodology

to formally based methodologies enables focusing on combinations which lead to interesting properties.

 Page 7

 Blocking

Function

Dispatching

Blocking

Function

Return

Room

for a Call

Sched

Res.

Available

Call

Stored

Block

on Call

Block on

Return

Exec

 1 2 3 4 5 6 7 8

1 true true Yes Yes No No Yes Yes

2 true true Yes No Yes No Yes Delayed

3 false true Yes Yes No No Yes Yes

4 false true Yes No Yes No Yes Delayed

5 false false Yes Yes No No No Yes

6 false false Yes No Yes No No Delayed

7 true false Yes Yes No No No Yes

8 true false Yes No Yes No No Delayed

9 true true No Yes No No Yes Yes

10 true true No No No Yes Yes Delayed

11 false true No Yes No No Yes Yes

12 false true No No No No No (*) No

13 false false No Yes No No No Yes

14 false false No No No No No No

15 true false No Yes No No No Yes

16 true false No No No Yes No Delayed

Table 1 Communication semantics to be implemented

The table shows that:

 The calling RtUnit gets blocked (“Yes” in Column 6 for cases 10 and 16) only if the

channel is stated in the model as “blockingFunctiondispatching=true” and neither

there is space in the calls buffer, nor there is schedulable resources available for the

call at the moment in time it is done (cases 10 and 16). Then, the execution is delayed

until the call is attended. That is, until either, there is space in the call buffer or until

there is schedulable resource available to attend the call.

 The call is stored in the channel (“Yes” in Column 5 for cases 2,4, 6 and 8) only if

there is room in the call buffer at the moment of the call and the RtUnit cannot allocate

immediately a schedulable resource (thread). That happens when the number of

Schedulable Resources Available in the called RtUnit is bigger than the number of

pending calls in the channel buffer.

 The called function is always executed except when when, at the time of the call,

neither there is room to store the call in the call buffer, nor there is a schedulable

resource available to attend the call and the channel was stated in the model as

“blockingFunctiondispatching=false” (“No” in Column 8 for cases 12 and 14). In

those cases, the function call is lost and can never be attended.

 The called function will be executed immediately (marked as “Yes” in Column 8 for

cases 1,3,5,7,9,11,13 and 15) whenever there is a schedulable resource available at the

time of the call.

 The called function will be executed after a delay (marked as “delayed” in Column 8

for cases 2,4,8,10 and 16) if:

o (a) there was no schedulable resource available, but there was room in the call

buffer to store the call (cases 1,3,5 and 7), or

o (b) there was neither room in the call buffer nor schedulable resource available,

but the channel is stated in the model as “blockingFunctiondispatching=true”.

 Page 8

 In general, the caller function is always blocked waiting for the return whenever the

“blockingFunctionReturn=true” is stated. The exception is reflected as “No (*)” in

column 7 of case 12, when the model states “blockingFunctionReturn=true” but the

semantics of the return is not blocking. The reason is that for this case, where a call is

done with “blockingFunctiondispatching=false”, and where at the time of the call

there is neither room on the call buffer, nor available schedulable resource to attend

the call immediately, it that it means that the call will be lost. Therefore, a blocking

wait would mean a deadlock, since the call will never be attended. For this case it is

assumed that the channel will detect the situation and it will immediately return with

an error condition. Therefore, it can be seen as a blocking on a return value which will

be immediately returned, so as no blocking.

Finally, there is a third communication mechanism supported, based on shared variable. For

it, the connector is stereotyped as a shared variable, which enables two attributes:

 isProtected: States if the client RtUnit has to remain blocked until the server starts to

attends the service (dispatching).

 type: type of data of the shared variable.

A CONTREX UML/MARTE PIM supports some additional features which are relevant for

the later relation with the ForSyDe (SDF) models. A first feature of interest is the possibility

of specifying a joint service. It is sketched in Figure 2.

Figure 2 Sketch of a joint-service in the CONTREX UML/MARTE PIM modelling methodology.

The basic idea is that a RtUnit can provide a service implementing a functionality “f(in a:T1,

in b:T2)” and that such a service can be invoked from two different RtUnits providing

independently the input arguments.

A methodological assumption is that the channel confluence in the provided port means such

joint service and that the serviced will not be dispatched until all the input arguments are

available.

RtUnit

RtUnit

RtUnit

 f(in T2 2:b)

Client-Server If

 f(in T1 1:a)

 f(in T1 a, in T2 b)

Client Server If1 Client Server If2

<channel,

StorageResource>

<channel,

StorageResource>

 Page 9

In order to support this modelling pattern, the methodology assumes that the interfaces

“If”,”If1” and “If2” are compatible as long as “If” is the provided interface, and the “If1” and

“If2” interfaces are required interfaces, and have been defined as specialized interfaces

inheriting from “If” (as shown in Figure 2).

Another feature supported by the CONTREX UML/MARTE modelling methodology is

“data-splitting”. Data splitting is oriented to model, explore and exploit data parallelism.

Figure 3 Sketch of data-splitting in the CONTREX UML/MARTE PIM modelling methodology.

Supporting data-splitting means that the interface of a provided service “f” can be declared

such the caller execution processes an amount of data M of a given type “T”, which can be

lesser than the amount of data N of the same type “T” contributed at the call of the service,

that is M<N. The methodology understands that, as long as, the interface “If1” is declared as a

specialization of the “If1” interface, they are compatible and the “data-splitting pattern” is

inferred.

Data splitting means that the server RtUnit will have either to fire a number of times “a” in a

sequential manner or by to using “b” (with b≤”a”) schedulable resources in order to process

all the M data at the service request. Moreover, the data returned from the split calls have to

be joinable and joined.

The number “a” ranges between N/M and N/M times depending on whether previous calls

have left remaining input arguments from previous service calls. This is possible, since the

methodology does not obliges M to be an integer multiple of N.

A generalization of the “data-splitting” modelling pattern means to support the case M>N.

This is supported by involving several firings of the requesting RtUnits before executing the

service.

Moreover, the CONTREX modelling methodology covers a more generic pattern of joint-

service, which, as it is sketched in Figure 5, supporting joint-services with data splitting.

RtUnit RtUnit

Client-Server If

 f(in T a[M])

 f(in T a[N])

Client Server If1

<channel,

StorageResource>

 Page 10

Figure 4 Sketch of a joint-service with data-splitting in the CONTREX UML/MARTE PIM modelling

methodology.

Nota: Pablo, ¿es este el patron al que te refieres? Lo que me parece curioso es que en el de

joint service la interfaz provista es la interfaz padre, mientras que en el data splitting la

interfaz provista es la interfaz hija. Asi que, ¿Cómo se hace el “merging”? No me queda claro.

RtUnit

RtUnit

RtUnit

 f(in T2 2:b[N])

Client-Server If

 f(in T1 1:a[N])

 f(in T1 a[N], in T2 b[M])

Client Server If1 Client Server If2

<channel,

StorageResource>

<channel,

StorageResource>

 Page 11

2 Importing ForSyDe SDF Models into the CONTREX
UML/MARTE PIM

This section shows how a ForSyDe SDF model is imported as a CONTREX PIM model.

There are several patterns which can be used to import the SDF model. This section shows a

pattern which has been selected because:

 The pattern is supported by an existing software synthesis methodology

 It reflects a natural modelling of SDF relying in function-based communication, where

the sense of the calls is the same that the sense of the flow of the data

Section REF discusses the patterns that have been found so far and how they can be also

employed in the MARTE to ForSyDe export.

2.1 Import a simple directed Homogeneous SDF model

In order to reason on the relation between the CONTREX UML/MARTE methodology and

ForSyDe SDF untimed model, a first convenient step is to reason on a simple SDF pattern,

specifically on a simple homogeneous SDF graph, shown in Figure 5.

B A 1 1

<T1>

1

Client-Server If

C 1

<T2>

T1 a;

a=fA();

write(a);

T1 a; T2 b;

read(a)

b=fB(a);

write(b);

T2 c;

read(b)

c=fC(b);

 fA fB fC

T1 a;

a=fA();

call fB(a);

b = fB(a)

call fC(b);

f’A f’B

c=fC(b);

f’C

RtUnit

A
RtUnit

B
RtUnit

C

 fB(in a:T1)

Client-Server If

 fC(in b:T2)

isDynamic =yes

isMain = dc

srPoolsize=1

srPoolPolicy=infinite

Wait

Channel
blockingFunctionDispatching=no

blockingFunctionReturn=no

priority = dc

timeout = dc

ordering = dc

StorageResource
resMult=1

 Page 12

Figure 5 . ForSyDe to CONTREX MARTE model mapping of a simple homogeneous SDF graph.

In an SDF model, a generic SDF node (1) first reads input data, (2) then computes, and (3)

then sends output data (e.g., node B in Figure 5). There are two specific derived types of

nodes: source nodes and sink nodes. Source nodes have no reading inputs, so they are not

waiting for data and the can autonomously trigger, i.e. they are autonomous nodes. The have

associated functionality without input arguments capable to generate output data (e.g., in

Figure 5, fA in node A). In contrast, all nodes with inputs are reactive, in the sense that they

remain blocked until there are sufficient data in their input to be fired. The sink nodes are a

specific kind of reactive node which produces not ouput data for another SDF node (e.g., node

C in Figure 5). Notice that when a SDF model is specified, the internal structure of the node

is directly associated to its type, and so it is sufficient to synthetically represent the

association of the function to the node (e.g., of function fA to node A, of function fB to node

B, of function fC to node C in Figure 5).

On the bottom of Figure 5, a sketch of the CONTREX UML/MARTE model derived is

shown. Relying on that sketch, a fundamental set of mapping rules is derived:

1. Each SDF node (origin
2
) is mapped into a RtUnit component plus an associated

functional code (target
3
). The attributes of the target RtUnit must fulfil:

a. A source HSDF node is mapped to a RtUnit with “isMain=true”.

b. The remaining nodes (generic or sink) will have “isMain=false”.

2. The code associated to a RtUnit targeted from a generic node must fulfill the

following rules:

a. It must implement a provided interface function f’(T) with the same interface

and corresponding to the function executed by the origin single-node HSDF

node f(T), where T is the data type of the origin input edge.

b. f’(T) must contain an internal variable for each return/output value produced

by the execution of the provided interface function.

c. f’(T) must contain at the end a call to the interface function corresponding to

the functionality of the destination single-SDF node, using as parameter the

internal variable mentioned in Rule 2.b.

3. The code associated to a RtUnit targeted from an origin source node must fulfil rules

2.a, 2.b and 2.c, with the particularity that the origin function has no parameters. Then

f’(T) is triggered autonomously (recalling Rule 1.a).

4. The code associated to a RtUnit targeted from an origin sink node is a particular case

of Rule 2, where only rule 2.a applies.

5. Every srPoolPolicy attribute of a RtUnit component with provided ports has to have

the value inifiteWait.

2
 We use origin adjective for elements on the origin model (ForSyDe model in the ForSyDe to UML/MARTE

mapping)
3
 We use target adjective for elements on the target model (UML/MARTE model in the ForSyDe to

UML/MARTE mapping)

 Page 13

6. Each SDF edge is mapped to a port-to-port link. The origin of the edge is mapped to a

required port. The end of the edge is mapped to a provided port. Both ports refer to an

interface with a prototype of the function implemented by the server RtUnit, which in

turn corresponds to the functionality of destination SDF node (node reached by the

SDF edge).

7. The port-to-port link shall have an associated channel stereotype with the following

values:

a. blockingFunctionDispatching=false

b. blockingFunctionReturn=false

Summing up, these rules support a dataflow within a component-based modelling

methodology with a generic and flexible function-call based communication (i.e. the the

CONTREX UML/MARTE methodology). It consists of autonomous (RtUnits) which call and

trigger services provided by other (RtUnits). Function calls are asynchronous in the

dispatching and in the return the caller RtUnit do not mind the return value. Actually, the

output values of the called functions are used by the owner RtUnit to trigger other RtUnits

corresponding to the triggered origin SDF nodes.

It is worth to make some clarifications on the rules.

Notice that Rule 1 maps to a RtUnit, regardless the type of the origin SDF node. The

consideration of the type of SDF node is translated into a specific constraint on the code

associated to the target RtUnit component. The “isMain” attribute is used to distinguish

autonomous from reactive functionality.

Rule 2 means that in the most generic case the functionality associated to the mapped RtUnit

must fulfill some constraints, that is, a structure which requires the generation of a wrapper

function. For instance, the SDF node B is converted into a RtUnit plus an associated

functionality f’B() with exactly the same input arguments as functionality fB. Then, the caller

RtUnit A actually invokes the wrapper function f’B, which, in addition toinvoking fB, uses the

produced data to invoke the function the corresponding wrapping function f’C, in charge of

executing the functionality corresponding to SDF node C.

Rule 3 means that RtUnit A will contain fA functionality (without arguments), which

autonomously triggers.

Rule 4 in Figure 5 means that fA functionality must be executed in RtUnit C. Notice that

dumping the output/return data on an internal variable and making something with it is not

strictly required from the translation perspective.

Rational on the Rule 5 is that such attribute guarantees that there will not be data lost in the

communication (a key assumption in dataflow models) because there will not be any function

call service lost.

 Page 14

Other parameters such as idDynamic, srPoolSize and ordering are implementation details are

not relevant and can be considered don’t care (dc in Figure 5). In order to guarantee that the

imported model is PHARAON compliant (so to reuse SW synthesis tooling in its current

state), the following attribute values can be assigned by default:

isDynamic=true

srPoolSize>0, e.g. srPoolSize

ordering=true

The association of a StorageResource parameter for modelling is similarly don´t care.

However, it is an implementation detail which is not reflected in the original SDF model. A

refinement of the model could consider that there should be a minimum storage capacity for

an untimed implementation (relying on blocking communications and dynamic scheduling).

For the HSDF case the value 1 is used.

 Page 15

C A 1 1

<T1>

1

 fB2(in 2:b:T2)

D 1

<T3>

T1 a;

a=fA();

write(a);

T1 a; T2 b;

read(a);

read (b);

c=fB(a,b);

write(c);

T2 c;

read(b)

c=fC(b);

fA fC fD

T1 a;

a=fA();

call fC(1:a);

c = fC(a,b)

call fD(c);

f’A

f’B
B <T2>

fB

1

1

T2 b;

b=fB();

call fC(2:b);

f’B

Client-Server If

 fB1(in 1:a:T1)

RtUnit

A
RtUnit

C
RtUnit

D

RtUnit

B
 fB(in a:T1, in b:T2)

Client Server If1 Client Server If1

