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1 Introduction 

 

The CONTREX UML/MARTE modelling methodology enables the description of the whole 

multicore MPSoC of a System-of-Systems (considering nodes connected through a network).  

The modelling methodology enables the building of models which serve as entry point for 

software synthesis for MPSoC platforms and a simulation-based DSE flows. 

 

A CONTREX UML/MARTE model consists of an application or platform independent model 

(PIM) and a platform model. Specifically, in this work we focus on the PIM description and 

on its relation to formally-based modelling methods. In the CONTREX UML/MARTE 

methodology, the PIM is a component-based model, i.e. the functionality is encapsulated 

within components, which enables SW reusability.  Moreover, the model is annotated with a 

rich variety of attributes with a standard semantics, encompassed by methodology-based 

assumptions, which enable to capture many relevant aspects of the PIM semantics.  

 

In this document we tackle the connection of such CONTREX UML/MARTE PIM with 

formally based modelling methodologies, specifically the ForSyDe methodology. This is very 

relevant in the context of mixed-criticality systems, where at least some part of the system is 

tied to strict requirements, not only on performance, but also on predictability. It imposes 

constraints both on the platform and also at higher levels, i.e. the PIM. In effect, a constraint 

on the platform might be of the form “do not allow cache memories”, so the analysis of worst-

case execution times is feasible.  However, as mentioned, the predictability challenge also 

reaches the application-level, with ever growing complexities, and many potential issues line 

non-determinism, deadlock, unboundeness, etc, difficult to solve without a disciplined 

application modelling. Formal-based modelling based on Models-of-Computation (MoC) 

theory helps on that purpose, since it defines modelling elements, modelling rules and 

assumptions, which help a modeler to build models enabling correctness-by-construction and 

more analyzability. 

 

Therefore, this work tackles how the CONTREX UML/MARTE methodology can be 

restricted in order to satisfy the behavioral and communication restrictions imposed by 

specific MoCs. This will enable to build models with parts endorsed with such formal ground. 

 

Specifically, in CONTREX we focus on the relation and integration with ForSyDe. ForSyDe 

support several models of computation and heterogeneous models. Such models can be 

executed to perform functional validation. Moreover, ForSyDe models are the entry point to 

an analytical Design Space Exploration methodology and to tools for automatically target 

GPGPUs and NoC-based implementations (from SR MoC-based models). 

 

Therefore, the interoperability of the modelling methodologies will enable the application and 

cooperation of their respective tool chains enabled by each modelling methodology. From the 

CONTREX UML/MARTE perspective, the main benefit has been already mentioned, of 

having parts of the model formally supported, with well sounded semantics and ready-to-use 

analysis to guarantee important properties, such as functional determinism, continuity, etc. 

From the ForSyDe side, the advantage is to have a link with a methodology which can grow 

the model with more generic parts not tied to MoC rules, and the possibility to exploit the 

simulation-based performance analysis and software synthesis tool-chains. 



  

 Page 3 

1.1 Description of the PIM in the CONTREX UML/MARTE 
methodology 

 

The purpose of this section is to provide a compact overview of the specification of the 

Platform Independent Model in the CONTREX UML/MARTE modelling methodology. More 

specifically, of the PIM model which concerns to the relation with ForSyDe. For it, the 

overview provides an abstract view, avoiding details referring to the use of UML, and of the 

MARTE and CONTREX specific profiles. Similarly, the discussion will focus on the MoC 

concepts supported by ForSyDe, rather on details proper of any of the ForSyDe flavours (in 

XML, in SystemC and in Haskell). 

 

Figure 1 sketches the type of component based model supported and the primary information 

which can be annotated and associated to it. The sketch focuses on the most relevant 

elements, specially concerning to the executive semantics. 

 

The CONTREX PIM model is structured as a set of communicating components.  

Components communicate among each other by providing and requiring functionalities. Such 

communication is performed only via component ports. A component which implements a 

functionality can make it available to another component by encapsulating the function 

prototype within a provided client-server interface and making it public to other components 

through to provided port (i.e., a port with a provided interface). Similarly, components 

requiring such services will declare a port with matching required client-server interface. This 

way, components communicate among them only through their ports.  

 

A methodological assumption is that all the functions of an interface will have the character of 

the interface (either provided or required). In other words, an interface cannot be used to 

contain both provided and required methods. 

 

Additionally, an interface operation can be of any of the following three types: 

 

 Sequential: No concurrency management mechanism is associated with the operation 

and, therefore, concurrency conflicts may occur. Instances that invoke the operation 

need to coordinate so that only one invocation to a target on any operation occurs at 

once. 

 Guarded: Multiple invocations of a behavioural feature may occur simultaneously to 

one instance, but only one is allowed to commence. The others are blocked until the 

performance of the currently executing operation is complete. It is the responsibility of 

the system designer to ensure that deadlocks do not occur due to simultaneous blocks. 

 Parallel: Multiple invocations of a behavioural feature may occur simultaneously to 

one instance and all of them may proceed concurrently. 

 

The methodology assumes that all the interface operations are of the same type. 

 

The model supports structural hierarchy once a component instance can be encapsulated 

within parent components. Eventually, a model could be transformed to a flattened model, 

semantically equivalent, and where all the components were “leaf components”. 
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The leaf components are components stereotyped as RtUnits (referred to simply as “RtUnit” 

in this summary) encapsulate functionality. The model states nothing about the inner structure 

of the functionality. For instance, both sequential and object-based code can capture the 

functionality. However, a set of attributes enable to state its due semantics, and how RtUnits 

interact with other RtUnits via port-to-port communication. 

 

The relevant attributes stating on the RtUnit semantics are the following: 

 isDynamic: 

o If true, it denotes that the real-time unit creates dynamically the 

schedulable resource required to execute its services. 

o If false, the real-time unit owns a pool of schedulable resources to 

execute its services. 

 srPoolSize: Size of the schedulable resource pool of a real-time unit. It states the 

capacity of the RtUnit in terms of maximum amount of schedulable resources. 

 srPoolPolicy: Kind of pool policy adopted by a real-time unit. The possible 

values in MARTE are: 

o infiniteWait: If the pool is empty, the real-time unit waits indefinitely 

until a schedulable resource will be released. 

o timedWait: If the pool is empty, the real-time unit waits for bound time 

until a schedulable resource will be released. At the end of the waiting 

time, if no schedulable resource have released, an exception is raised. 

o Dynamic: If the pool is empty, the real-time unit creates a new 

schedulable resource and adds it to the pool. 

o Exception: If the pool is empty, the real-time unit raise an exception. 

o Other 

 The isMain attribute can be set true to denote the main application. Default false. 

 

The methodology enables a rich description of the component communication.  

 

In the simplest case, a simple port-to-port connection can be specified.  For such a case, a 

remote procedure call (RPC) applies. That is, the RtUnit with the required interface (client 

RtUnit) is the one which calls the service, i.e. a function of the required interface, which is 

implemented and executed by the RtUnit associated to the provided interface port (server 

RtUnit). The client RtUnit is assumed to be blocked while the server RtUnit receives and 

process the service requests, and until it returns and notifies its completion to the caller 

RtUnit. 

 

In order to support additional communication and synchronization mechanisms, the port-to-

port connection can be specified as a channel. In such a case, the following attributes serve to 

modulate the communication semantics: 
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Figure 1 Sketch of the CONTREX UML/MARTE PIM model and the main attributes defining the 

semantics. 

 

 blockingFunctionDispatching: States if the client RtUnit has to remain blocked until 

either the server starts to attends the service (dispatching) or the call is stored in 

channel (when the channel has capability at least for a call). 

 

 blockingFunctionReturn: States if the client RtUnit has to remain blocked until the 

server response (including the return values). 

 

 priority: states the priority of the client call with regard to the server. Used by the 

server to decide which client to attend first. 

 

 timeOut: maximum time that a client shall be waiting for a function´s call response. 

 

 Ordering: states if the channel has to deal with the call as an ordered set and so has to 

preserve an order in the server response according to the calling order. 

 

In addition, the channel can be also stereotyped such a storage resource capability (result 

attribute) can be assigned. This storage resource capability states the buffering capability of 

the channel in terms of maximum amount of function call requests. 
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The communication semantics associated to the channel is summarized in the Table 1 
1
. Table 

1 reflects the communication semantics as a result of four factors. The two former are two 

static attributes of the channel of the model on the two first columns: 

1. Value of the blockingFunctionDispatching attribute. 

2. Value of the blockingFunctionReturn attribute.  

The other two columns reflect the state of the channel and of the called RtUnit which 

implements the called function: 

3. Room for a Call in Buffer: States if there is room for storing a function call at a 

given time during the execution. Notice that this depends on the size of the 

buffering capability of the channel (resMult), among other factors. 

4. Schedulable Resource Available for the call: the RtUnit implementing the called 

function can allocate immediately one schedulable resource (thread) in order to 

attend to service request. Notice that, among other factors, this depends on the 

srPoolSize attribute value and on the state of the called RtUnit. Specifically, the 

number of schedulable resources (threads) available must be strictly bigger than 

the number of pending calls in the buffer, assuming that the pending calls have 

equal or bigger priority. Then, the RtUnit can use the schedulable resources 

available for the pending calls and use at least one schedulable resource more for 

attending the new call. 

Therefore, depending on the value of the two first attributes, and on the two state values 

reflected in columns 3 and 4, the behaviour of the requester (client) RtUnit, of the channel and 

of the server RtUnit are stated: 

5. Store: States if the function call request will be stored or not in the channel at the 

moment of the call. 

6. Block on call: States if the caller (client) RtUnit will be blocked. 

7. Block on return: States if the caller (client) RtUnit will be blocked. 

8. Exec: States if the called function will be executed or not, and in the former 

case, if its execution will be delayed until schedulable resources of the called 

RtUnit are available. 

 

 

 

 Static properties Run-Time State BEHAVIOUR (Semantics) 

 Of 

channel 

Of 

channel 

Of 

Called 

RtUnit 

channel Caller 

(Client) 

RtUnit 

Called 

(Server) 

RtUnit 

                                                 
1
 Notice that Table 1 covers part of the attributes. Considering all the attributes and their possible values 

(complete semantics description) would lead to a high amount of combinations. The relation of the methodology 

to formally based methodologies enables focusing on combinations which lead to interesting properties. 
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 1 2 3 4 5 6 7 8 

1 true true Yes Yes No No Yes Yes 

2 true true Yes No Yes No Yes Delayed 

3 false true Yes Yes No No Yes Yes 

4 false true Yes No Yes No Yes Delayed 

5 false false Yes Yes No No No Yes 

6 false false Yes No Yes No No Delayed 

7 true false Yes Yes No No No Yes 

8 true false Yes No Yes No No Delayed 

  

9 true true No Yes No No Yes Yes 

10 true true No No No Yes Yes Delayed 

11 false true No Yes No No Yes Yes 

12 false true No No No No No (*) No 

13 false false No Yes No No No Yes 

14 false false No No No No No No 

15 true false No Yes No No No Yes 

16 true false No No No Yes No Delayed 

Table 1 Communication semantics to be implemented 

 

The table shows that: 

 The calling RtUnit gets blocked (“Yes” in Column 6 for cases 10 and 16) only if the 

channel is stated in the model as “blockingFunctiondispatching=true” and neither 

there is space in the calls buffer, nor there is schedulable resources available for the 

call at the moment in time it is done (cases 10 and 16). Then, the execution is delayed 

until the call is attended. That is, until either, there is space in the call buffer or until 

there is schedulable resource available to attend the call. 

 The call is stored in the channel (“Yes” in Column 5 for cases 2,4, 6 and 8) only if 

there is room in the call buffer at the moment of the call and the RtUnit cannot allocate 

immediately a schedulable resource (thread). That happens when the number of 

Schedulable Resources Available in the called RtUnit is bigger than the number of 

pending calls in the channel buffer. 

 The called function is always executed except when when, at the time of the call, 

neither there is room to store the call in the call buffer, nor there is a schedulable 

resource available to attend the call and the channel was stated in the model as 

“blockingFunctiondispatching=false” (“No” in Column 8 for cases 12 and 14). In 

those cases, the function call is lost and can never be attended. 

 The called function will be executed immediately (marked as “Yes” in Column 8 for 

cases 1,3,5,7,9,11,13 and 15) whenever there is a schedulable resource available at the 

time of the call.  

 The called function will be executed after a delay (marked as “delayed” in Column 8 

for cases 2,4,8,10 and 16) if: 

o (a) there was no schedulable resource available, but there was room in the call 

buffer to store the call (cases 1,3,5 and 7), or 

o (b) there was neither room in the call buffer nor schedulable resource available, 

but the channel is stated in the model as “blockingFunctiondispatching=true”. 
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 In general, the caller function is always blocked waiting for the return whenever the 

“blockingFunctionReturn=true” is stated. The exception is reflected as “No (*)” in 

column 7 of case 12, when the model states  “blockingFunctionReturn=true” but the 

semantics of the return is not blocking. The reason is that for this case, where a call is 

done with “blockingFunctiondispatching=false”, and where at the time of the call 

there is neither room on the call buffer, nor available schedulable resource to attend 

the call immediately, it that it means that the call will be lost. Therefore, a blocking 

wait would mean a deadlock, since the call will never be attended. For this case it is 

assumed that the channel will detect the situation and it will immediately return with 

an error condition. Therefore, it can be seen as a blocking on a return value which will 

be immediately returned, so as no blocking.  

 

Finally, there is a third communication mechanism supported, based on shared variable. For 

it, the connector is stereotyped as a shared variable, which enables two attributes: 

 isProtected: States if the client RtUnit has to remain blocked until the server starts to 

attends the service (dispatching). 

 

 type: type of data of the shared variable. 

 

A CONTREX UML/MARTE PIM supports some additional features which are relevant for 

the later relation with the ForSyDe (SDF) models. A first feature of interest is the possibility 

of specifying a joint service. It is sketched in Figure 2. 

 

Figure 2 Sketch of a joint-service in the CONTREX UML/MARTE PIM modelling methodology. 

The basic idea is that a RtUnit can provide a service implementing a functionality “f(in a:T1, 

in b:T2)” and that such a service can be invoked from two different RtUnits providing 

independently the input arguments.  

A methodological assumption is that the channel confluence in the provided port means such 

joint service and that the serviced will not be dispatched until all the input arguments are 

available. 

RtUnit 

RtUnit 

RtUnit 

 f(in T2 2:b) 

 

Client-Server If 

 f(in T1 1:a) 

 

 f(in T1 a, in T2 b) 

 

Client Server If1 Client Server If2 

<channel, 

StorageResource> 

<channel, 

StorageResource> 
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In order to support this modelling pattern, the methodology assumes that the interfaces 

“If”,”If1” and “If2” are compatible as long as “If” is the provided interface, and the “If1” and 

“If2” interfaces are required interfaces, and have been defined as specialized interfaces 

inheriting from “If” (as shown in Figure 2). 

 

Another feature supported by the CONTREX UML/MARTE modelling methodology is 

“data-splitting”. Data splitting is oriented to model, explore and exploit data parallelism. 

 

Figure 3 Sketch of data-splitting in the CONTREX UML/MARTE PIM modelling methodology. 

Supporting data-splitting means that the interface of a provided service “f” can be declared 

such the caller execution processes an amount of data M of a given type “T”, which can be 

lesser than the amount of data N of the same type “T” contributed at the call of the service, 

that is M<N. The methodology understands that, as long as, the interface “If1” is declared as a 

specialization of the “If1” interface, they are compatible and the “data-splitting pattern” is 

inferred.  

 

Data splitting means that the server RtUnit will have either to fire a number of times “a” in a 

sequential manner or by to using “b” (with b≤”a”) schedulable resources in order to process 

all the M data at the service request. Moreover, the data returned from the split calls have to 

be joinable and joined. 

 

The number “a” ranges between N/M and N/M times depending on whether previous calls 

have left remaining input arguments from previous service calls. This is possible, since the 

methodology does not obliges M to be an integer multiple of N. 

 

A generalization of the “data-splitting” modelling pattern means to support the case M>N. 

This is supported by involving several firings of the requesting RtUnits before executing the 

service. 

 

Moreover, the CONTREX modelling methodology covers a more generic pattern of joint-

service, which, as it is sketched in Figure 5, supporting joint-services with  data splitting. 
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Figure 4 Sketch of a joint-service with data-splitting in the CONTREX UML/MARTE PIM modelling 

methodology. 

 

Nota: Pablo, ¿es este el patron al que te refieres? Lo que me parece curioso es que en el de 

joint service la interfaz provista es la interfaz padre, mientras que en el data splitting la 

interfaz provista es la interfaz hija. Asi que, ¿Cómo se hace el “merging”? No me queda claro. 
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2 Importing ForSyDe SDF Models into the CONTREX 
UML/MARTE PIM 

This section shows how a ForSyDe SDF model is imported as a CONTREX PIM model. 

There are several patterns which can be used to import the SDF model. This section shows a 

pattern which has been selected because: 

 The pattern is supported by an existing software synthesis methodology 

 It reflects a natural modelling of SDF relying in function-based communication, where 

the sense of the calls is the same that the sense of the flow of the data 

Section REF discusses the patterns that have been found so far and how they can be also 

employed in the MARTE to ForSyDe export. 

2.1 Import a simple directed Homogeneous SDF model 

In order to reason on the relation between the CONTREX UML/MARTE methodology and 

ForSyDe SDF untimed model, a first convenient step is to reason on a simple SDF pattern, 

specifically on a simple homogeneous SDF graph, shown in Figure 5. 
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Figure 5 . ForSyDe to CONTREX MARTE model mapping of a simple homogeneous SDF graph. 

 

In an SDF model, a generic SDF node (1) first reads input data, (2) then computes, and (3) 

then sends output data (e.g., node B in Figure 5). There are two specific derived types of 

nodes: source nodes and sink nodes. Source nodes have no reading inputs, so they are not 

waiting for data and the can autonomously trigger, i.e. they are autonomous nodes. The have 

associated functionality without input arguments capable to generate output data (e.g., in 

Figure 5, fA in node A). In contrast, all nodes with inputs are reactive, in the sense that they 

remain blocked until there are sufficient data in their input to be fired. The sink nodes are a 

specific kind of reactive node which produces not ouput data for another SDF node (e.g., node 

C in Figure 5).  Notice that when a SDF model is specified, the internal structure of the node 

is directly associated to its type, and so it is sufficient to synthetically represent the 

association of the function to the node (e.g., of function fA to node A, of function fB to node 

B, of function fC to node C in Figure 5). 

On the bottom of Figure 5, a sketch of the CONTREX UML/MARTE model derived is 

shown. Relying on that sketch, a fundamental set of mapping rules is derived: 

1. Each SDF node (origin
2
) is mapped into a RtUnit component plus an associated 

functional code (target
3
). The attributes of the target RtUnit must fulfil: 

a. A source HSDF node is mapped to a RtUnit with  “isMain=true”. 

b. The remaining nodes (generic or sink) will have “isMain=false”. 

2. The code associated to a RtUnit targeted from a generic node must fulfill the 

following rules: 

a. It must implement a provided interface function f’(T) with the same interface  

and corresponding to the function executed by the origin single-node HSDF 

node f(T), where T is the data type of the origin input edge. 

b. f’(T) must contain an internal variable for each return/output value produced 

by the execution of the provided interface function. 

c. f’(T) must contain at the end a call to the interface function corresponding to 

the functionality of the destination single-SDF node, using as parameter the 

internal variable mentioned in Rule 2.b. 

3. The code associated to a RtUnit targeted from an origin source node must fulfil rules 

2.a, 2.b and 2.c, with the particularity that the origin function has no parameters. Then 

f’(T) is triggered autonomously (recalling Rule 1.a). 

4. The code associated to a RtUnit targeted from an origin sink node is a particular case 

of Rule 2, where only rule 2.a applies. 

5. Every srPoolPolicy attribute of a RtUnit component with provided ports has to have 

the value inifiteWait. 

                                                 
2
 We use origin adjective for elements on the origin model (ForSyDe model in the ForSyDe to UML/MARTE 

mapping) 
3
 We use target adjective for elements on the target model (UML/MARTE model in the ForSyDe to 

UML/MARTE mapping) 
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6. Each SDF edge is mapped to a port-to-port link. The origin of the edge is mapped to a 

required port. The end of the edge is mapped to a provided port. Both ports refer to an 

interface with a prototype of the function implemented by the server RtUnit, which in 

turn corresponds to the functionality of destination SDF node (node reached by the 

SDF edge). 

7. The port-to-port link shall have an associated channel stereotype with the following 

values: 

a. blockingFunctionDispatching=false 

b. blockingFunctionReturn=false 

 

Summing up, these rules support a dataflow within a component-based modelling 

methodology with a generic and flexible function-call based communication (i.e. the the 

CONTREX UML/MARTE methodology). It consists of autonomous (RtUnits) which call and 

trigger services provided by other (RtUnits). Function calls are asynchronous in the 

dispatching and in the return the caller RtUnit do not mind the return value. Actually, the 

output values of the called functions are used by the owner RtUnit to trigger other RtUnits 

corresponding to the triggered origin SDF nodes. 

It is worth to make some clarifications on the rules. 

Notice that Rule 1 maps to a RtUnit, regardless the type of the origin SDF node. The 

consideration of the type of SDF node is translated into a specific constraint on the code 

associated to the target RtUnit component. The “isMain” attribute is used to distinguish 

autonomous from reactive functionality. 

Rule 2 means that in the most generic case the functionality associated to the mapped RtUnit 

must fulfill some constraints, that is, a structure which requires the generation of a wrapper 

function. For instance, the SDF node B is converted into a RtUnit plus an associated 

functionality f’B() with exactly the same input arguments as functionality fB. Then, the caller 

RtUnit A actually invokes the wrapper function f’B, which, in addition toinvoking fB, uses the 

produced data to invoke the function the corresponding wrapping function f’C, in charge of 

executing the functionality corresponding to SDF node C. 

Rule 3 means that RtUnit A will contain fA functionality (without arguments), which 

autonomously triggers. 

Rule 4 in Figure 5 means that fA functionality must be executed in RtUnit C. Notice that 

dumping the output/return data on an internal variable and making something with it is not 

strictly required from the translation perspective. 

 

 

 

Rational on the Rule 5 is that such attribute guarantees that there will not be data lost in the 

communication (a key assumption in dataflow models) because there will not be any function 

call service lost.  
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Other parameters such as idDynamic, srPoolSize and ordering are implementation details are 

not relevant and can be considered don’t care (dc in Figure 5). In order to guarantee that the 

imported model is PHARAON compliant (so to reuse SW synthesis tooling in its current 

state), the following attribute values can be assigned by default: 

isDynamic=true 

srPoolSize>0, e.g. srPoolSize 

ordering=true 

The association of a StorageResource parameter for modelling is similarly don´t care. 

However, it is an implementation detail which is not reflected in the original SDF model. A 

refinement of the model could consider that there should be a minimum storage capacity for 

an untimed implementation (relying on blocking communications and dynamic scheduling). 

For the HSDF case the value 1 is used. 
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