
 
 

 

 

 

 

The S3D Modeling Methodology v1.0 
February 2020 
Javier Merino 
Eugenio Villar 
Hector Posadas 



 

 

Document history 

6-FEBRUARY-2019 FIRST DRAFT BY E. VILLAR AND H. POSADAS 
15-OCTOBER-2019 DRAFT VERSION V.02 BY J. MERINO 
7-FEBRUARY-2020 REVISION BY E. VILLAR 

  
 



 
 

 
 

Page 3 of 71    
 

Executive summary 

In this document, the S3D modeling methodology is detailed. The methodology is built up on the 
previous methodology refined in the Pharaon and Contrex projects. It is derived from the requirements 
imposed by the evolution of embedded systems from connected but isolated boards in a product to a 
component of a network of distributed devices connected among them and with the cloud in order to 
provide a certain value-added service to the final users. This radical new context requires the capability 
to model complex, heterogeneous, distributed systems while ensuring scalability and reusability. 

To achieve these goals new modeling methods have been developed. In order to improve 
scalability, hierarchical partition of both the application functionality and the executive HW/SW platform 
have been better supported. In order to improve reusability, the concept of generic component has been 
defined. In addition, these generic components are grouped in libraries so that they can be reused as 
many times as required. 

The new S3D modeling methodology requires an adaptation of the associated tools, VIPPE for 
system simulation and performance analysis and eSSYN for SW synthesis. These new versions of the 
tools are being assessed on the Thales FMS Use Case. Plans exist to apply them in other use cases, 
such as the Nokia Base Transceiver Station. 
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1 Introduction 

Model-Driven Software Engineering has proven to be a powerful approach to deal with the increasing 
complexity of software development [BCW12]. It can be adapted to different design contexts and 
domains, being compatible with methodologies like Agile [Amb15] and DevOps [NMP17]. Currently, 
most systems involve just a small number of computing resources, such as a datacenter processing the 
voice from a smartphone and providing a voice-to-text service, or the distance sensors in a car 
connected to an Electronic Control Unit providing an automatic parking service to the driver. In these 
examples, specifying the complete service, deciding which functionality to execute in each node, and 
programming the corresponding application, although reasonably complex, are affordable tasks. 
However, services in a fully interconnected world will be composed of many SW components deployed 
on multiple devices of many kinds. All these electronic devices and the distributed SW they execute 
compose a system of a high complexity in terms of the distributed executive platform, the functionality 
it implements and the strong interaction with the physical environment that the system realizes. An 
additional, important aspect to consider is the interaction between the system and the humans both as 
users or involved directly or indirectly in its operation (humans in the loop). Is in this heterogeneous, 
multi-domain environment where the abstraction, inter-operability and reusability capabilities of Model-
Driven Engineering become especially relevant. In this new context, Software Engineering is still an 
important part of the problem but no longer the only one. Understanding the underlying infrastructure of 
hardware devices and networks on which the functionality is deployed as well as its interaction with the 
physical world and the human being are of paramount importance. 

The tendency in the last years has been towards a specialization of SW development methods 
and languages to specific domains, leading to a diversity of Domain-Specific Languages (DSLs) 
[BCW12]. Nevertheless, the evolution commented above requires of new, holistic, mega-modeling 
methodologies able to model the complete system and its interaction with the physical environment in a 
unified way, thus supporting the verification of the functional requirements and the analysis of the non-
functional requirements such as execution times, delays, data movement, power consumption, etc. 
Among these DSLs, UML/MARTE has been proposed for the modeling and analysis of real-time and 
embedded systems. The profile covers both system engineering by supporting the general resource and 
component modeling and software engineering, by supporting the high-level application modeling and 
the detailed software resource modeling. In addition, UML/MARTE covers architectural mapping and 
design-space exploration by supporting the description of the computing architecture by the detailed 
hardware resource modeling [SeGe14]. 

The Microelectronics Group of the University of Cantabria (UC) has a large experience in 
system modeling using UML/MARTE. The modeling methodology has been improved along the time 
[PHV10] [MMW11][HPP12][GHH13][HPP14][PNP14][HMV17] extending its modeling capabilities. The 
final goal is to support efficient modeling of services implemented as Cyber-Physical Systems of 
Systems (CPSoS) [MVH17]. In this document, the S3D system modeling methodology based on 
UML/MARTE is proposed able to support efficient SoS modeling. In the next section the proposed 
system design methodology is described. The main improvements to current common practices are 
highlighted. S3D is a Single-Source, System Design Framework where all the relevant information about 
the system being designed is centralized in a single model. The rationale behind this approach comes 
from the fact that modeling is costly and error prone. The main goal of the S3D single-source approach 
is to minimize the modeling effort as much as possible. In order to facilitate capturing all the relevant 
information about the system for different purposes in a coherent, accessible and understandable way, 
the information is organized in views. Each view encloses all the required information about a particular 
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aspect of the system. As each view is orthogonal to the others, they support separation of concerns, 
which is an important principle for designing high quality software systems and is both applied in the 
Model-Driven Architecture (MDA) and Aspect-Oriented Software Development (AOSD) [Lap07] 
[TAH07]. From the central repository, different tools can be used in order to perform the different design 
tasks such as verification, simulation, performance analysis, schedulablility analysis, etc. Finally, when 
the design is considered correct, satisfying all the functional and extra-functional constraints, the code 
to be deployed on the different computational nodes of the distributed platform is automatically 
generated, as shown in Figure 1: 

 
Figure 1 The S3D framework. 

In this document, the S3D modeling methodology is described. The example used along the text is a 
Flight Management System (FSM) proposed by Thales as Use Case in the MegaMart project. 

1.1 System design methodology 
The modeling methodology proposed may be used in many different system design and verification 
methodologies. We will refer to the V-Model, to which the modeling methodology, as part of the S3D 
Framework, will be applied. The traditional V-Model is drawn in Figure 2. The descendent (left-side) 
steps correspond to design activities at system, architecture and component levels) while the ascendant 
(right-side) steps correspond to verification steps. Independently of the quality of the software testing 
methods used, software verification is usually limited to just functional verification, that is, the code is 
executed in the same machine it was developed under a collection of tests. In this way, design tasks 
such as design-space exploration, code optimization, architectural mapping, etc. in which performance 
metrics play an essential role in taking the right decisions, can be done only during the prototyping 
phase. In most cases, this is too late and any change would require a high re-designing effort. This 
problem is even harder in current heterogeneous architectures in which, even in a single platform, there 
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is a number of different computational devices (big-little CPUs, GPUs, DSPs, ASHW, etc.) on which to 
map the application components. 

In the MegaMart project, the UC has the objective of reducing the development time for complex 
systems by exploring several improvements to the design and verification process. The first is the use 
of a multi-level verification framework introducing Model-in-the-Loop in addition to the Functional 
Verification commented above (SW-in-the-Loop) and the final prototyping (HW-in-the-Loop). 

 
Figure 2 Traditional V-Model for SW Engineering. 

 
Figure 3 Some MegaMart improvements to the traditional V-Model. 

In this way, both functional and extra-functional design mistakes can be detected earlier and corrected 
with much less effort and time. The second, by automatizing all the processes in the flow in which 
information is extracted from the Single-Source Model in order to perform a particular design task such 
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as executable model generation or final implementation. Both improvements are shown in Figure 3. As 
it can be seen, the multi-level validation & verification framework using simulation at different abstraction 
levels supports detection of design errors earlier in the design process. Reusability of the tests to be 
applied along the verification process is another key improvement. The models at each stage are 
automatically generated from the system model, thus accelerating the process. So, mSSYN generates 
the different models at different abstraction levels to be validated using several simulation technologies, 
when needed. At the end of the process, the final solution is automatically generated using eSSYN 
(essyn.com). 

1.2 System modeling requirements 
Nowadays, we have just started to realize the enormous potential of an interconnected world of billions 
of smart devices providing new services to people [Wel16]. The end of Moore’s Law might facilitate the 
proliferation of new electronic systems supporting these new services. As commented above, these, 
services will be built of many SW components deployed on multiple devices, from small sensing motes, 
embedded systems and smartphones to data-centers, and even, High-Performance Computing (HPC) 
facilities. Despite its apparent diversity, all of them may be implemented with integrated systems 
containing heterogeneous processing elements (i.e. CPUs of different kinds, GPUs, DSPs and HW co-
processors). In all cases, the systems will need to satisfy functional and extra-functional critical 
constraints, including safety, security, power efficiency, performance, size, and cost. The global 
characteristics of the system as a whole will depend on the characteristics of their independent 
components, but also on the interaction with the physical environment and among them through the 
different communication networks. Therefore, the main innovation in the time to come shall be to jump 
from the design of cyber-physical systems (CPS) to cyber-physical systems of systems (CPSoS). These 
complex, heterogeneous, distributed systems require an interdisciplinary approach where the 
knowledge about the physical side of the systems is indispensable to arrive at solutions that are taken 
up in the real world. To integrate these diverse research and development communities is the most 
crucial aspect for a successful future development of CPSoS. Current domain-specific methods are 
becoming obsolete; hence new predictive, engineering and programming methods and tools are 
required ensuring the satisfaction of the functional and extra-functional constraints imposed to the 
system while considering its interaction with the physical world and the humans. 

The main reaction to the continuous evolution of computing platforms has been to decouple the 
application SW from the underlying HW. To achieve this goal many abstraction layers of middleware, 
communication protocols, operating systems, hypervisors and HW abstraction layers are being used. 
This approach is powerful enough for general-purpose systems, for which extra-functional constraints 
such as execution times, energy efficiency, dependability, etc. are not strict. But the technological 
evolution towards CPSoS based on heterogeneous devices composed of CPUs of different kind, GPUs, 
DSPs, HW co-processors etc., added to the need to satisfy stricter non-functional properties makes this 
goal unrealizable. Therefore, there is a need for a holistic modeling framework, across SW and HW 
layers, applications and domains. This modeling framework should be able to capture the complete 
high-abstraction model, integrating projects with different constraints (i.e. commercial or critical SW) and 
domains (i.e. from High Performance Computing, to embedded SW). The modeling and design 
framework should provide him/her with an accurate knowledge of the implications that the final 
implementation of the functionality on the concrete (distributed) platforms under a specific functional 
mapping will have in terms of extra-functional constraints. Beyond performance, energy consumption, 
safety, data traffic, security, adaptability, scalability, complexity management and cost-effectiveness 
have to be taken into account. This information about the complete system characteristics can be used 
in its design-space exploration and optimization. As commented above, an essential aspect to be taken 
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into account is the interaction of the system with humans all along the life cycle, since the specification 
and design of the system until its deployment, field and obsolescence. 

UML has the potential to be the central modeling language in this new context. To achieve this 
goal, a consensus on a profile, powerful enough to capture all the relevant concepts required in CPSoS 
engineering while, at the same time, simple enough to find wide acceptance by the design community, 
is required. MARTE is a good starting point for two main reasons. Firstly, it captures most of the concepts 
required in system engineering on heterogeneous platforms under strict design constraints. Secondly, 
there is clear convergence among computing platforms and today, it is possible to find the same 
computing resources (i.e. CPUs, GPUs, and application-specific HW) in platforms apparently as 
different as an embedded system, a smartphone and a supercomputer. 

Concrete requirements that the UML/MARTE modeling methodology should satisfy, follow. 

1.2.1 Simplicity 

Modeling is a time-consuming, error-prone activity. In order to minimize the modeling effort and to 
reduce the number of modeling mistakes, the modeling methodology should be simple, easy to 
understand and to be applied. The single-source modeling approach [Amb15] followed by S3D is 
intended to reduce the modeling effort. It supports capturing all the relevant information in a single model 
thus avoiding duplication of design information. 

As an additional characteristic towards simplicity and understandability, the number of 
fundamental modeling primitives should be as reduced as possible. In our case, the methodology is 
Component-Based [LaCo17] and therefore, the fundamental modeling primitives are those shown in 
Figure 4 

 
Figure 4 A system with three components. 

The fundamental modeling element is the component. Components communicate among them through 
ports. The ports contain interfaces, which implement the communication methods. The components 
either require communication methods (or services) trough required interfaces or offer communication 
methods (or services) through provided interfaces. Just by looking to the system architecture in Figure 
4, one can realize that ‘Component 2’ is an active component (stereotyped as an RTUnit) requiring 
services provided by other components. ‘Component 1’ on the contrary, is a passive component (which 
can be stereotyped as a PPUnit) providing services to other components. ‘Component 3‘ may have its 
own internal concurrent activity as it requires services through ‘Port 3.1’ and provides services through 
‘Port 3.2’ or it is a PPUnit requiring services from a third component (‘Port 3.1’) in order to implement 
the services it provides through ‘Port 3.2’. 
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As it will be shown latter, this simple modeling mechanism will be able to support different 
system engineering methodologies and Models of Computation (MoC). 

1.2.2 Scalability 

Although simple, the modeling methodology should be able to support the modeling and design of 
complex systems. Systems providing the services commented above, implemented by the interaction 
of many different functional components deployed on many different computing devices of many kinds. 

In order to achieve this goal, several fundamental techniques are supported. The first one, 
hierarchy. When a problem is too complex, the main way to address its modeling is dividing it in smaller 
sub-components, which can be modeled independently. In relation with hierarchy, another characteristic 
to be covered is composability. The components should be able to be composed without restrictions 
whenever one provides the services the other requires. In this way, the modeling methodology should 
support a ‘bottom-up’ design methodology where sub-components are built up by the composition of 
simpler components, which, in the same way, can be the result of the composition of other simpler 
components as shown in Figure 5. 

 
Figure 5 Different systems composed from the same components. 

One of the main objectives of Megamart is the modeling of very complex systems requiring 
MegaModeling methodologies. This goal will be achieved by improving the modeling methodology 
proposed in this document with additional features like hierarchical HW modeling and multi-language 
support. 

1.2.3 Separation of concerns 

In the general case, capturing all the relevant information about the system in a single place following a 
single-source approach may be in contradiction with the simplicity goal stated above. In order to avoid 
this contradiction and to reduce the modeling effort, the system model is divided in ‘views’. Each ‘view’ 
will capture all the relevant information about a specific design concern (i.e. the data types used, the 
functionality, the communication among components, the functional application, the system verification, 
etc.). 
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1.2.4 Design-Space exploration 

The methodology should be flexible enough to support the analysis and comparison of many different 
architectural solutions for the implementation of a complex system. The system architect should be able 
to explore as many different architectural mappings as needed, that is, decisions about which 
computational resource should execute each functional component, with minimal effort. The concrete 
analysis model of a particular architectural mapping should be generated automatically [PRV11]. 

1.2.5 Reusability 

One of the main ways to improve design productivity is to keep to a minimum the need to develop new 
components from scratch but using them repeatedly from one project to the other. The achievement of 
this goal requires the components completely platform independent. This provides important 
advantages in terms of reusability in two main aspects. The first one is the improvement in reusability 
of the components from project to project, that is, when there is a need to up-date the service. As each 
component encapsulates its functionality in a platform independent way, only those components whose 
functionality needs to be up-dated have to be considered as the services provided or required by the 
other components will not be affected even in case the up-date of the system requires a complete 
architectural re-mapping. This is particularly interesting in DevCons methodologies where the analysis 
of the behavior of the system in runtime allows the improvement of new versions of the same system or 
even, new generations of the product. 

The second advantage comes from the reusability of the components when the execution 
platform is improved (i.e. new versions of the same family of platforms) or changed both in terms of the 
HW-dependent SW (i.e. a change in the OS or the middleware) or the HW. Apart from the reusability 
facilitated by the platform-independence of the components, there are other two aspects of S3D 
improving reusability. The first is the use of what we call ‘Generic Components’. These components are 
defined only by the services they provide and/or require. They lack ports, as they will be added when 
the Generic component is instantiated as an ‘Application Component’ inside a concrete system, with the 
sole exception that a component requires the same interface from N providers, where it is needed that 
these N ports are specified in the component. The second is the use of interface inheritance. This allows 
the connection of components even if they provide/require different services whenever one interface 
inherits from the other. 

Improving the reusability of a component requires an extra effort in encapsulating the 
component in a convenient way and integrating it in a library with related components. This effort is 
worth to be spent whenever the component is going to be optimized in new versions of the application 
or reused in a new application [KRB13]. 

Only once mapped to a concrete computing resource, the corresponding platform specific code 
including the required middleware, input-output access code and system calls should be generated. Our 
goal is to make this generation process completely automatic by SW synthesis. 

2 System Modeling 

In this section, the S3D modeling methodology will be detailed. First, the fundamental concepts 
supporting the methodology are described. Then, the views used in order to model the different aspects 
of the system ensuring a strong separation of concerns, are presented. 



 
 

 
 

Page 14 of 71    
 

2.1 Fundamental elements 
The system views are divided in two large groups, the Design & Verification (D&V) views and the Tool-
Specific views. The former provides all the relevant information about the system in order to support its 
design, simulation, verification, performance analysis and synthesis. The latter include additional 
information required by specific tools supporting concrete design tasks. In this document, only the D&V 
views will be described. 

The D&V views are divided in three groups, the Platform-Independent Model (PIM), the Platform 
Description Model (PDM) and the Platform-Specific Model (PSM). 

2.1.1 Platform-Independent Model 

In this section, the fundamental elements of the PIM will be described. The PIM captures all the 
information required to describe the platform-independent functionality of the system. Following the 
basics of Model-Driven Architecture (MDA), the PIM “exhibits a sufficient degree of independence so as 
to enable its mapping to one or more platforms” [Tru06]. As the code is developed ‘for’ a particular 
platform, making use of platform-dependent code (system calls, drivers, etc.), the functionality of the 
objects in the model has to be expressed using abstract formats such as state-machines or sequence 
diagrams. From them it is possible to automatically generate the equivalent functional code. 
Nevertheless, experience shows that these means are useful only for small pieces of code but they fail 
when dealing with complex functions. Therefore, in S3D, as soon as the component is fully specified its 
functionality is developed by using the preferred programming language (i.e. C++, Java, etc.). Several 
codes can be associated to each component. In order to be Platform-Independent, the code should not 
include any system call or Hardware-dependent Software (HdS). 

Generic components 
As commented above, the system is conceived as a network of components. In order to maximize 
reusability and flexibility, components are generic components. In MARTE, these elements are 
Structured Components. In their most abstract form, the only external information about such elements 
is the services (functions) they provide and/or require, as shown in Figure 6. Thus, the required interface 
of a structured component lists all the services that the component requires from other components or 
the environment. The provided interface lists all the services that the component offers to other 
components or the environment. The fact that the structured components do not specify which, and in 
what way the required/provided services are grouped in interfaces and exposed externally, maximizes 
the reusability of these components. 

 
Figure 6 A Structured Component. 

Each structured component will be linked to the file where its structured data and behavior is specified 
in the action language used, in our case, C++. In principal, no restrictions are imposed to the way the 
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behavior is specified. Nevertheless, as it will be described in more detail afterwards, component-based 
design methodologies impose restrictions on how the components interact among them, that is, only 
through well-defined interfaces [LaDi17]. Going further, actor-oriented design methodologies impose 
additional restrictions on the internal functionality of the component. 

These Generic Components will be grouped and provided to the system engineer in libraries 
avoiding the need to develop them from scratch or from the adaptation of legacy code from previous 
projects.  

Application components 
From the generic components, application components with concrete ports and interfaces will be derived 
by inheritance, as shown in Figure 7. These application components can be instantiated as <<RtUnit>> 
or <<PpUnit>> weather they are an active, concurrent object or a passive one. The system will be 
obtained as a composition of such application components connected each other through concrete, 
compatible ports and interfaces. The behavior of the application component is the same as the generic 
component from which it inherits. As it will be explained later, in Section 0, the interaction among 
components can be specified in a flexible way by concrete properties. Depending on the properties 
assigned to the ports and interfaces in both sides, different MoCs can be supported. Functional and 
extra-functional constraints may be imposed to the application components using appropriate constraint-
specification languages such as OCL. 

 
Figure 7 SENS_C1 as a generic and as an inherited, application component. 



 
 

 
 

Page 16 of 71    
 

As it will be seen afterwards, the ‘RtUnit’ may trigger as many concurrent threads as required. Some of 
them will be related with the concurrency required by the implementation of the interface functions under 
the MoC defined. Nevertheless, in an ‘RtUnit’, there is only one ‘main’ function. This means that, in 
principal, apart from the interface concurrency, there is only one active thread per component. If 
additional threads are required, they could be created as forks from the main thread. In order to ensure 
that the code is platform-independent, concurrent languages able to be compiled to different platforms 
should be used, such as C11, Java, ADA, OpenMP, OpenCL, Qt, etc. 

Subsystems 
Application components can be grouped together in subsystems. A subsystem is just a component. It 
includes other components inside and, therefore, a subsystem is a hierarchical component. In order to 
identify a component as a subsystem, the <<Subsystem>> stereotype is used. A subsystem can be part 
of more complex subsystems. In this way, subsystems are essential to deal with the modeling of 
complex systems of systems. 

 
Figure 8 The structural subsystem, locGroup. 
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If the subsystem does not have any internal functionality and is just a structural architecture of internal 
components, the subsystem is said to be a ‘structural subsystem’. This is the case of the ‘locGroup’ in 
the Thales FMS composed directly from the interconnection of components ‘loc_c1’, ‘loc_c2’, ‘loc_c3’ 
and ‘loc_c4’, as shown in Figure 8. The global functionality of a structural subsystem comes directly 
from the composition of the functionalities of their internal components. Otherwise, if the subsystem, 
apart from the functionality of its internal components has its own internal functionality and resources, it 
is said to be a ‘functional subsystem’. The functionality will be associated to the subsystem in the same 
way as with any other component, by a linked file where its structured data and behavior is specified in 
the action language used. 

As the interaction between an internal component in a subsystem and the internal functionality of the 
subsystem, if any, and the rest of components in the subsystem, if any, has to be clearly defined, only 
application components can be used. Nevertheless, independently of its internal architecture and 
functionality, a subsystem can be defined as a generic component without concrete ports; just exhibiting 
the public required and provided services. In this way, again, the flexibility and thus, the reusability of 
the subsystem is maximized. 

Verification 
As it was shown in Figure 3, verification is performed all along the design process. Each time the 
functional end extra-functional constraints for the whole system, its application subsystems and each of 
the components are defined, black-box verification suites at the different granularity levels can be set-
up. When the code is ready, concrete test sequences ensuring the correct behavior of the system and 
its components can be developed. 

2.1.2 Platform Description Model 

In this section, the fundamental elements of the PDM will be described. The PDM captures all the 
information required to describe the HW/SW platform of computing resources used to execute the 
system functionality described in the PIM. 

Network nodes 
In order to deal with the modeling of very complex systems of systems (SoS), partition and hierarchy 
are essential mechanisms to be exploited. The SoS should be partitioned in parts (i.e. complete systems 
by themselves) which should be partitioned again hierarchically until the detailed computing platform 
can be described by its computing architecture of HW devices. These hierarchical parts are nodes 
connected each other through a network infrastructure. 

Network nodes plays in the platform description the same role as the subsystems in the platform 
independent model. Figure 9 shows the FMS architecture composed of two nodes, the HW in the 
airplane and the remote data-base in the cloud connected through an airplane-server data-link. 

Memory spaces 
Depending on the characteristics of the computing platform, the application mapped on it may be 
implemented in only one process (an executable) or several. Each executable process will share the 
computing resources with the other processes but in its own memory space. Without this information, it 
is not possible to generate the application code. This is the reason why the functional components in a 
node are mapped to memory spaces. Only when the complete system is simple enough this 
intermediate layer can be removed. Figure 11 shows the implementation of the FMS in two executables, 
‘CriticalSW’ and ‘FlightPlan’. The airports Data-base is to be implemented in a third executable. 
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Figure 9 FMS Network architecture. 

 
Figure 10 Mapping of Functional components to executables. 

 
Figure 11 Architectural mapping of FMD components. 
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Software platform 
An essential element in any computing platform is the Operating System (OS), eventually, several of 
them when the computing platform is complex and heterogeneous enough. In some cases, when a 
system or a subsystem has real-time constraints, a Real-Time Operating System (RTOS) is required. In 
Figure 11, the FMS is to be implemented grouping the real-time tasks in an executable on the RTEMS 
RTOS and the rest of tasks in an executable running on Linux. 

Apart from the OS, there is another Hardware-dependent Software (HdS) that has to be taken into 
account. Peripherals and, eventually, co-processors may require specific SW to implement the high-
level interface services used in the PIM. In the general case, these HdS has two layers. The first one is 
the device driver. In general, this piece of code is an integral part of the device. As it will be commented 
later, any HW device should be associated to its IP-XACT model. The IP-XACT model should include 
the code of the device driver. In order to ensure that the PIM model is really platform-independent, the 
application code should not call directly the driver functions of any device. Therefore, a second layer is 
usually required implementing the PIM interface functions making use of the concrete functions of the 
device driver. This code will be represented in the software platform as a <<deviceBroker>> realizing a 
certain connection. The driver of the device should be installed in the OS. In Figure 11, the HdS for the 
interface ‘I_HWSensor’ is provided. The ‘deviceBroker’ provides the implementation of the function 
‘getSensorInfo(D_HWSensor *info)’ using the RTEMS ‘driver’ for the AirPlaneSensors device. 

Hardware resources 
MARTE supports the modeling of HW providing a functional classification of hardware entities such as 
processors, memories, busses, peripherals, etc.1 They are grouped in the HW modeling package. In 
S3D the HW logical stereotypes <<HW_PLD>> and <<HW_ASIC>> have a physical semantics and 
should not be used in the HW resources view. In Figure 12, the computing architecture of the airplane 
HW is shown. There, a dual ARM Cortex R8 has been used to implement all the real-time functions and 
a Cortex A35 for the non-critical functions. 

 
Figure 12 HW architecture for the “Airplane_HW” Node. 

Silicon implementation 
The MARTE ‘HW_Physical’ model represents hardware resources as physical components with details 
on their shape, size, position within platform, power consumption, heat dissipation, and many other 
physical properties. In S3D, ‘HW_Logical’ entities, apart from ‘HW_PLD’ and ‘HW_ASIC’ can be mapped 
to physical entities indicating a design intention or decision. As an example, in Figure 13, the ARM R8 
and associated devices are to be implemented in a FPGA, the main memory will make use of a 

                                                      
 
1 Computing resources would correspond to the ‘devices’ in programming languages such as OpenCL. 



 
 

 
 

Page 20 of 71    
 

commercial chip (stereotyped as <<Hw_Component>>) and the non-critical resources will be 
implemented in an ASIC. Based on this information, S3D will generate automatically all the information 
needed to feed the corresponding design flows. 

 
Figure 13 HW implementation. 

2.1.3 Platform-Specific Model 

The Platform-Specific Model (PSM) captures al the implementation decisions taken during the design 
process. 

Architectural mapping 
Design decisions are expressed in UML with the ‘abstraction’ and ‘allocate’ relation between objects. A 
is allocated in B means that object A is to be implemented by object B. In Figure 11 it is possible to see 
the design decisions taken for the architectural mapping of the FMS application components. 

2.2 D&V Views 
As commented above, the complete model is organized in views. Each of these views captures a 
specific aspect of the system to be designed. The views are modeled as UML packages specified by 
the corresponding stereotype. The stereotypes, classified by the modeling type, are the following: 

PIM views 

<<ApplicationView>> 

<<VerificationView>> 

PDM views 

<<MemorySpaceView>> 

<<SwPlatformView>> 

<<HwResourceView>> 
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PSM view 

<<ArchitecturalView>> 

Figure 14 shows how the model is organized in Eclipse EMF Neon. As it can be seen, the model is 
composed of packages for each of the views commented above. The ‘Thales_UC_v2’ model of the 
‘Thales_FMS’ project makes use of the legacy components in the ‘Thales FMS components’ library.  

2.3 Components Library 
Facilitating reusability is one of the main concerns of the S3D modeling methodology. Reusability 
requires encapsulating the component in a way that facilitates its reuse. This is the goal of generic 
components. The second step would be its integration in a reusable component library. 

A component is modeled as a package. The package will contain all the relevant information 
about the component. The first element in the package is the component itself, stereotyped as a ‘RtUnit’ 
or a ‘PpUnit’. In addition, the minimum information to be provided is represented by the interface 
functions of the component and the data types used by them. In order to support simulation, 
performance analysis and synthesis, the files with the code in an appropriate action language are 
required. Component verification would require a specific package with the test cases in an appropriate 
language. 

 
Figure 14 Model views and Component Library. 

Figure 15 shows the model of component ‘SENS_C1’ to be used in the ‘Thales_FMS’ system. As it can 
be seen the component ‘SENS_C1’ is a ‘RtUnit’ with ‘run_sens_c1’ as main function. The ‘DataTypes’ 
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package includes the data types used by the interface functions. They are included in the ‘Interfaces’ 
package. 

The files capturing the functionality of the component in C/C++ and Java are described in the 
‘FileFolders’ package. The ‘TestData’ package includes the test files to verify the component in a 
GoogleTest framework. A ‘Class Diagram’ named ‘Functionality’ is used in order to associate instances 
of all these files describing the functionality of the component and its verification tests to a 
‘generalization’ of the component. 

2.3.1 Active Components 

Active application components are modelled as UML components with the MARTE stereotype 
<<RtUnit>> (Figure 16). An RtUnit component has its own execution thread, its associated files 
with its functionality in an Action Language (i.e. C/C++), and will provide/require services to/from other 
application components by means of provided and required interfaces. These provided/required 
interfaces and code files are defined in the FunctionalView. 

 
Figure 15 SENS_C1 component. 

 
Figure 16 Active application components. 
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Active Component Attributes 
The following attributes of the <<RtUnit>> stereotype are supported: 

• The attribute isDynamic. A value isDynamic=true specifies that the application component 
dynamically creates threads in order to attend the requests to the services provided by the 
RtUnit, 

• The attribute srPoolSize specifies that the RtUnit has a finite set of threads to attend requests 
to the provided services, 

• The attribute srPoolPolicy should be infiniteWait to denote that, in the event that there is 
a service request and the RtUnit cannot create a thread to attend the service (because the 
srPoolSize limit has been reached), the RtUnit waits until one of its server threads is released 
(after completing a service request), 

• The isMain attribute is used to specify that the RtUnit has a main thread to be activated when 
the application executable is launched. 

The main function of an active Component 
In order to define the main function of the component, the “main” attribute of the <<RtUnit>> stereotype 
is used. The attribute is assigned to a UML operation captured in the functional view, as shown in 
Figure 17: 

 
Figure 17 Main function of an application component. 

So, the mainCompo component will generate a static thread executing main_func. S3D recommends 
avoiding generating dynamic threads from the main function. Nevertheless, if this is needed, it can be 
done using a concurrent language (i.e. C11, Java, ADA, OpenCL, Qt, etc.). 

The main function of a component may have input parameters. In order to annotate these 
values, a UML constraint is used. The constraint has to be owned by each instance of a component. In 
the constraint, the name of the functions and the values of their parameters is captured by means of the 
following syntax: “$initValue=nameFunction(value1,value2,value3)”. 

2.3.2 Passive Components 

Protected passive units (PpUnit) are used to model shared information required by active components.  
a) shows a PpUnit component providing services through three ports. b) shows a PpUnit requiring 
services. Nevertheless, this happen only as a consequence of the execution of the provided services, 
not as a consequence of any internal  

PpUnits may specify their concurrency policy either globally or for all of their provided services 
through the concPolicy property. The services provided by the PpUnit are enclosed in interfaces and 
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offered through provided ClientServerPorts. All the interfaces provided by a PpUnit component inherent 
the value of the attribute concPolicy. 

As in the case of the RtUnit components, Generic PpUnit Components may have associated 
files, files folder and libraries in order to describe its functionality. 

2.3.3 Subsystems 

Subsystems are modeled in a similar as leaf components. These components have an 
internal structure, composed of interconnected application components. The subsystem does 
not impose the number of ports. They will be decided afterwards, once the subsystem is 
instantiated in any system application. As it is shown in Figure 18, the ‘LocGroup’ subsystem 
follows the same organization than a single, “leaf” component. 

The main difference is that the subsystem includes as packages the models of all the components the 
subsystem uses. Another difference is that the subsystem is stereotyped as a <<Subsystem>>. The 
figure includes the composite diagram showing the internal architecture of the subsystem. As it is by 
itself a generic component in the system, it has no ports. This shows how the methodology supports 
hierarchical partitioning, an essential feature to enable mega-modeling. 

 
Figure 18 LocGroup subsystem. 

2.3.4 Data Types 

The UML elements that can be used to define the data types of the system are UML Enumerations 
(enumerated types), UML Primitive Types (basic data types such as “unsigned char”, “int”, “long”, 
etc.) and UML Data Types that are used to define new data types. 

Enumeration Data types 
Enumerations are captured as UML Enumeration data types and the different values of the 
enumeration are modelled as Enumeration Literals as shown in Figure 19 
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Figure 19 Enumeration data types. 

Primitive Data types 
UML PrimitiveTypes are used to define basic data types, as shown in Figure 20 

 
Figure 20 Primitive types. 

Derived Data types 
The UML DataTypes are used to define new kinds of data. UML Data types are used for modelling 
non-primitive data types (derived data types). They are structured data and arrays. 

Structure Data types 
Structured Data are modelled by using the MARTE stereotype <<TupleType>>. The Datatype has 
a set of properties typed by t h e  specific data type or primitive type that represent the fields of 
the structured data type. When a field of the structure data types is a pointer, an asterisk is annotated 
in the name as in the “newp_support” data type of Figure 21 

 
Figure 21 Structure Datatype. 

Array Data types 
Arrays are modelled by using the MARTE stereotype <<CollectionType>>. The collectionType 
stereotype is applied to a DataType model element. A property has to be added to this DataType. 
The property should be typed by PrimitiveType or another DataType. Then, in the attribute 
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collectionAttrib of the stereotype CollectionType that property should be attached, as property 
“array128i” in Figure 22. 

If the array is unidimensional, its dimension is annotated in the multiplicity tag. If the array is 
multidimensional, the attribute should be specified by the MARTE stereotype <<Shape>>.The definition 
of the dimensions is {dim1, dim2, dim3} (Figure 22 and Figure 23). In these cases, the definition of the 
size (in Bytes) of the array should be annotated as (X,Bytes)x(Y,Bytes)x(Z,Bytes) or by the notation 
(X*Y*Z, Bytes) (Figure 22). 

In some cases, the designer prefers not to specify the dimensions of the array. Figure 24 
shows two cases of how to define an array with no specific value of its dimensions. In the case of a 
unidimensional array, the size is defined in the tag multiplicity as [0…*] of the corresponding property 
of the Datatype. In the case of multi-dimensional arrays (by applying the stereotype Shape), the 
corresponding dimension should be specified by “*”. Figure 24 shows examples of these undefined 
annotations. 

 

Figure 22 Array modelling. 

 
Figure 23 Array dimension specification by the Shape stereotype. 

 
Figure 24 Arrays with undefined dimensions. 
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Completely specified data types 
The methodology includes a stereotype for completely specifying the data types. The attributes 
associated with this stereotype are shown in Table 1:. 

<<DataSpecification>> 
size: NFP_Data [1] 

pointer: Boolean [1] 
dataSpecifier: DataSpecifier [1] 
dataQualifier: DataQualifier [1] 

 complexDataType: String [0..1] 
Table 1:  <<DataSpecification>> stereotype attributes. 

The attributes are: 

size: defines the size of the data in its memory representation. The attribute size is NFP_Data, a 
MARTE data type that specifies the size of a data. The notation of this MARTE type consists of two 
values, the value and the unit. It can be annotated in two different ways: 

• size: NFP_DataSize[1] = (value=8, unit=Byte), where the value is a real number and the unit 
might be bit, Byte, KB, MB or GB. 

• size: NFP_DataSize[1] = (16,Byte). 

pointer: specifies whether the data is a pointer 

dataSpecifier: denotes the data type. In order to ensure language-independency, this attribute is 
defined by a string. So, the list of values in the case of the C/C++ language is the following: 
 

<<String>> 
DataSpecifier 

None 
char 

signed char 
unsigned char 

short 
short int 

signed short 
signed short int 
unsigned short 

unsigned short int 

Int 
signed int 
unsigned 

unsigned int 
long 

long int 
signed long 

signed long int 
unsigned long 

unsigned long int 

long 
long long int 

signed long long 
signed long long int 
unsigned long long 

unsigned long long int 
float 

double 
long double 

void 

Table 2:  Data Specifier Values. 

dataQualifier: denotes the data qualifier. In the case of C/C++, the list of values of the DataQualifier 
attribute is the following: 
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<<String>> 
DataQualifier 

 none 

const 
volatile 
register 

 Table 3:  Data qualifier values. 

complexDataType: can only be used when the possible values of the dataSpecifier and dataQualifier 
cannot specify the data type. For instance, “complexDataType = const volatile unsigned long int”. 

2.3.5 Generalization of Data Types 

The modeling methodology enables the definition of data types. This is modeled using the UML 
inheritance. If the parent element of the UML inheritance is a Primitive Type (in Figure 25, the data 
“ULONG” and “USHORT”), the specific data is specified by the values of the corresponding primitive 
type captured in the attributes of the stereotype DataSpecification (the attributes dataSpecifier or the 
complexDataType). If the parent element of the UML inheritance is a Data Type (in Figure 25, the data 
“Byte”) the specific data is specified by the DataType (in Figure 25, the “QoS” is specified as “BYTE”). 

  
Figure 25 Data Generalizations. 

In some design optimization tasks, it is required to divide a data type containing many data in a new, 
related data types, with a subset of the data. In these cases, data type inheritance can be a solution. 
Some modelling constraints are applied to these data type inheritances: 

• Both data are of an UML Data Type, 

• The stereotype DataSpecification should apply to both data types, 

• The attribute complexDataType of the DataSpecification stereotype of the derived data type 
(in Figure 26, the Data Type array_memc_tctu_exploration) should be specified by the name 
of the parent data type (in Figure 26, the Data Type array_memc_tctu), 

• In the attribute size of the DataSpecification stereotype, the new and different value of the 
size (in Bytes) of data should be specified: 
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Figure 26 Data Type generalization. 

In this way, a service using array_memc_tctu can be provided by executing two times the same service 
using array_memc_tctu_exploration. 

2.3.6 Files 

The files that store the implementation source-code of the applications are modeled as UML artifacts. 
These artifacts are specified by the UML standard stereotype <<File>>. The Artifacts are specified 
by a name (annotated in the attribute “name”) and in the attribute “File name”, where the name and 
the extension of the file should be included, as shown in Figure 27: 

 
Figure 27 Files. 

File specification 
Each File can be specified in more detailed with additional information. This additional information is 
captured in the stereotype <<ApplicationFile>>. The ApplicationFile stereotype has the following 
attributes: 

parallelized: Boolean. The file contains code in a concurrent language (i.e. C11, OpenMP, OpenCL, 
Qt, etc.) leading to several threads when executed, 

highLevel: Boolean. The file corresponds to a high-level language which cannot not be compiled directly 
(i.e. Heptagon from which C can be obtained), 
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implementation: String. The file is optimized to be executed in a specific HW resource: DSP, NEON, 
GPU, etc. The name annotated should be the same as the HwISA of the HW processor specified in the 
HwResourceView used for the allocation. 

notModifiable: Boolean. The file is protected and cannot be modified. 

environment: Boolean. The file corresponds to a test bench of the system. 

<<ApplicationFile >> 

parallelized: Boolean [1] 

highLevel: Boolean [1] 

implementation: String [0..1] 

notModifiable: Boolean [1] 

environment: Boolean [1] 

Figure 28 ApplicationFile stereotype attributes. 

Association of Files, File Folders and Libraries to Generic Components 
The association of files, file folders and libraries to Generic Components is specified using a UML Class 
diagram. The association is made using the UML connector <<use>> between instantiations of the files 
in the file folder and a generalization of the component, as shown in Figure 26. 

 

Figure 29 Association of files to Generic Components. 

2.3.7 Interfaces 

Interfaces integrate the services provided/required by a component and define its characteristics. Each 
interface function is stereotyped as a Real-Time service (‘RtService’). Its properties are defined by the 
attributes described in Section 3.3.1. All the functions included in the same interface share the same 
properties. The same function can be included in different interfaces with different properties. 

Interfaces are modelled by means of UML interfaces. UML interfaces are stereotyped by 
MARTE <<ClientServerSpecification>>. A ClientServerSpecification provides a way to define a 
specialized interface that is to be defined in terms of its provided (or required) operations. 

Generic Interfaces 

In principal, a Generic Component has as many interfaces as provided/required services. Only 
when a set of services are going to be handle together always, they are grouped in the same Generic 
Interface. In order to maximize reusability, these Generic Interfaces should not be annotated with 
properties limiting its architectural applicability. When a generic component is used in a concrete 
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architecture, its ports should be associated with the corresponding application interfaces including all 
the functions required or provided by the port. Application Interfaces will integrate services of several 
Generic Interfaces as required by the connectivity of the application component in its use in the 
application architecture. 

Application Interfaces 

When a component is instantiated in a system (or subsystem) architecture, the ports through 
which the component communicates with the other components in the system (or subsystem) and with 
the environment are decided. All the services required (or required) by the port should be grouped in a 
single interface. This interface is defined by inheriting all the interfaces whose services have to be 
grouped, as shown in Figure 30: 

 
Figure 30 Application Interface based on two Generic Interfaces. 

Interface Services 
Interface functions are stereotyped as Real-Time services (RtService). Their properties are defined by 
several attributes. Due to its importance in order to define the MoC of the component and its 
environment, they are described afterwards, in Section 3.3.1. 

Service Arguments 
In the general case, Interface Functions have arguments. These arguments are modelled as UML 
parameters. These parameters ca be typed by the Data types defined in the Data Model. The UML 
parameters can be in, inout and return. The order of the arguments in a function prototype has 
to be specified. For that purpose, the name of the UML arguments that model the function arguments 
should be defined as order:nameArgument where the value order defines the order of the argument 
in the function prototype. 

Pointer 
The function arguments can be modelled as pointers by applying the stereotype <<Pointer>>. 

Reference 
The function arguments can be modelled as references by applying the stereotype <<Reference>>. 

Arguments Qualifier 
The function arguments can be specified by a qualifier by applying the stereotype 
<<ParameterQualifier>>. Values associated with the ParameterQualifier stereotype are “const”, 
“volatile” and “register”. 
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Interface compatibility 
The methodology supports interface compatibility. Interface compatibility enables the connection of 
components with different interfaces whenever the service required by one component can be realized 
by the service provided by another component. Thus expanding reusability. Moreover, interface 
compatibility allows exploring different design alternatives based on different concurrency levels. 

In order to be compatible, two interfaces have to share at least one compatible function. These 
compatible functions are the functions to be provided by one component and required by the other. 
Compatibility between interfaces and interface functions can be expressed using UML inheritance in the 
same way as with data generalization (see $2.3.5). The parent function is provided while the inherited 
functions are required by one or several components. 

Two functions with different names and parameters are compatible whenever: 

1. the set of parameters of the derived function is a subset of the parameters of the parent 
function, 

2. the types of the parameters in the subset are the same or a generalization of the parameters 
in the parent function and with the same direction, 

3. all the parameters of the parent function are associated once and only once to the 
parameters of the parameter sets of all the inherited functions. Parameters in the parent and 
the inherited functions should be associated unambiguously either by name or type. Of 
course, the direction must be the same, 

4. an inout parameter in the parent function may be associated to two parameters in one or two 
inherited functions provided that such association is unambiguous, 

5. independently from/to which inherited function a parameter is got and eventually, changed, 
the functionality performed is that of the parent function. 

In Figure 31, the service getDBRunway can be provided whenever the services getAirport and 
getRunway are required and the two-input data needed (airport and runway), got from them. The result 
will be provided when the service getRunway() is required. Parameter airport is associated by name 
while parameter runway is associated by type. 

 
Figure 31 Interfaces inheritance. 
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Interface compatibility is very useful in breaking the sequentiality imposed by services with input and 
output data. In general, it is difficult to avoid stopping the execution of the thread requiring the service 
until it is executed in the provided component and the results (inout and return parameters), produced. 
This limitation is particularly important in signal processing systems. With interface compatibility, the 
times in providing and delivering data are different which means that the service can be called as 
frequent as needed, independently of its execution time (whenever the throughput is kept). 

2.3.8 Libraries 

In order to compile an application, it is necessary to include all the libraries used when developing the 
code. Therefore, in order to enable the generation of the makefiles, these libraries should be 
modeled. Libraries are modeled as UML Artifacts specified by the UML standard stereotype 
<<library>> as shown in Figure 32: 

 
Figure 32 Libraries 

2.3.9 Auxiliary Files 

As was described previously, each application component has the files that implement each specific 
application functionality associated. However, these files can require functions that are implemented in 
other files and which act as auxiliary files that provide services for the application functionalities. These 
auxiliary files are modeled as UML packages in order to represent the folder where these files are 
allocated. These files are specified by the stereotype <<FilesFolder>>. 

The FilesFolder stereotype has the following attributes: 

• parallelized: the file folder contains files containing concurrent code, 

• highLevel: the file folder contains files that specify high-level functionality, 

• implementation: the file folder contains files which are optimized to be executed in a specific 
HW resource (i.e. DSP, NEON, GPU, etc.), 

• notModifiable : the file folder contains files which cannot be modified for any reason, 

• environment: the file folder contains a test bench. 

 
Figure 33 Auxiliary FilesFolder packages. 
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2.4 Application View 
This view allows capturing the generic components selected/developed to implement a system, the 
application architecture where these components have been instantiated as application components 
and the way they have been connected each other. A hierarchical approach is used to capture the 
application model. So, the complete application is captured as a component, the system, which in turn 
can be hierarchically partitioned in simpler subsystems and components. Three types of components 
are supported, active, passive and composite components. An application component communicates 
with other components through client-server ports. These ports have associated required/provided 
interfaces. Provided interfaces declare the functionalities implemented by the component and offered to 
other components. Required interfaces declare the functionalities invoked by the component but 
implemented by others. The application view serves to declare and define these components and to 
interconnect them, eventually generating the “top” application component, called the system in the 
application view context. The system component (and by extension, a composite component) is 
described through the instantiation and interconnection of declared generic components. All these 
instances and interconnections configure the application architecture. Application components are 
interconnected each other through port-to-port connectors. 

The functionality of the application is derived from the source code in the files associated to the 
generic components from which the application components have been instantiated. Additional 
functionality will be derived from the properties assigned to the interfaces and ports defining the way the 
component interacts with other components and/or the environment. In any case, the application model 
shall be platform-independent. 

2.4.1 Components 

In general, components in the Application View are generalizations of generic components and sub-
systems in the reusable libraries used in the development of the system. These generalizations will be 
used in composing the system architecture. Components and sub-systems are connected each other 
through ports. 

2.4.2 Ports 

Communication among application components is established through UML ports. The ports link to the 
interfaces containing the services that the application components require and/or provide. These ports 
and interfaces may be assigned with properties. These properties would define the model of 
computation and communication among components. 

The ports of the components should be specified by the MARTE stereotype 
<<ClientServerPort>>. In the attribute kind of the ClientServerPort stereotype, the port is specified 
considering whether the port provides or requires an interface. The interface required or provided by the 
port is defined in the attributes provInterface and reqInterface. 

In order to specify the interaction properties of the interface, the S3D stereotype 
<<ClientServerQueuePort>> should be used. This way, system modeling under different MoCs is 
supported as addressed in section 0. 

2.4.3 Connectors 

Ports are connected am ong them  using UML connectors. 

In Digital Signal Processing applications, the flow of data among components is very relevant 
in order to understand the behavior of the system. In order to highlight the direction of data movements, 
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when all the parameters in all the functions in an interface have the same direction, instead of a 
connector, the two ports may be linked with an InformationFlow edge making data direction explicit. 

2.4.4 Application Architecture 

The top application component is captures as a UML component decorated with the <<System>> 
stereotype. Within the application view context, this is called the System component. Only one 
System component should be defined within the ApplicationView package. 

The System component is built up with instances of the application components interconnected 
through connectors. The application architecture is captured in a UML Composite Structure diagram 
associated with the System component. 

2.4.5 System ports: I/O communication  

The System component communicates with the external environment. This environment communication 
is established through ports. These UML ports should be specified by the MARTE stereotype 
<<ClientServerPort>> (Figure 34), specifying the correct values of the attribute kind, provInterface and 
reqInterface. These System ports are connected to application instances. This connection is port-to-
port. 

 
Figure 34 Application Structure. 

2.4.6 Periodic Application Instances 

The main function of an application component may be characterized by a period, triggering its execution 
periodically. The period of an application component is modelled by a UML comment specified by the 
MARTE stereotype <<RtSpecification>>. In the attribute occKind the period is annotated as: 

• periodic (period= (value, unitTime)) 

Then, the RtSpecification comment is associated to the RtUnit instance component by using a UML 
link (Figure 35): 
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Figure 35 Periodic application instance. 

2.4.7 System Files 

The System component may have associated files. These files are identified by the UML standard 
stereotype <<File>> and by the stereotype <<SystemFile>>. These files are associated with the System 
component through a UML abstraction specified by UML Use relations, as shown in Figure 36: 

 
Figure 36 System component with associated files. 

Libraries 
The compilation of the application may require a set of specific libraries in order to enable the generation 
of the required makefiles. The Libraries defined are associated with the System component by means 
of UML Use relations, as Figure 37 shows: 

 
Figure 37 System component with associated libraries. 

Files Folders 
The FilesFolders packages are associated with the System component by UML Use relations. The 
designer is free to include the corresponding UML artifact files in these packages in order to model the 
real auxiliary files explicitly. 
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Figure 38 System component with FilesFolder packages. 

Modeling Variables 
In S3D, modelling variables are used to define characteristics required to fully model the application 
components of the system in relation to certain deign tasks such as compilation and code generation. 
The modelling variables are: 

• language: specifies the language in which the specific application functionality is implemented. 
Not mandatory (by default, it is “C”). 

• path: specifies the path where the functional files are allocated in the host. Mandatory for the 
System component. 

• path_system: specifies a path of a File or FilesFolder of an application component that has as 
first part of the absolute path, the path associate to the System component. 

Modeling Variable Specification 
Modeling variables are annotated as $nameVariable=”valueVariable”; as shown in Figure 39: 

 
Figure 39 Specification of Modeling Variables. 

The model variables are annotated with UML Constraints owned by the component (RtUnit, System, 
etc.) denoted in the ownedRule of the component and in the “Context” attribute of the constraint (Figure 
40). 

 
Figure 40 UML constraint for application component variables. 



 
 

 
 

Page 38 of 71    
 

The “Specification” attribute of constraint contains the declaration of the variables. The variable 
annotation is captured in a LiteralString (Figure 41). Then, the constraint is associated with an element 
model that is included in the ConstrainedElement attribute of the UML constraint (Figure 40). The 
ConstrainedElement attribute denotes the model element which the variables annotated in the constraint 
are applied. This association is captured by using and UML link between the constraint and the model 
element. It is necessary to distinguish which element is the owner of the constraint and the element to 
be specified by the variables of the constraint. So, in Figure 41, there are four constraints 
(“MAC_LMAC_states_facets”, “MAC_LMAC_varibles”, “MAC_InterfacesFolder_LMAC_common” and 
“MAC_Folder_LMAC”). All these UML constraints are owned by the application component “lmac” 
(Figure 43). However, not all of these constraints are applied to the same model element, denoted by 
the attribute “ConstrainedElement” of the constraints (Figure 44). 

 
Figure 41 Annotation in a UML constraint for variable specification. 

 
Figure 42 Multiple constraints in the same application component. 

 
Figure 43 Constrains to the “lmac” application component. 
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Figure 44 Constraints with different constrained elements. 

2.4.8 Concatenation of paths 

The creation of the makefiles from the information captured in the model requires the paths of the 
different model elements to be exact. The criteria for composing these paths is a concatenation of 
different paths. The base path is the $path annotated in the System component. This path is used 
to create the complete paths of the different files, file folders, etc. of the application (Figure 45): 

 
Figure 45 Specification of the System’s base path. 

Then, each application component has its own relative path. In Figure 46, the application component 
“lmac” has the associated constraint “MAC_LMAC_variables”. This constraint specifies the $language, 
$creation and $path. In relation to the $path, the base path for the files and files-folder associated with 
this component is “home/leonidas/yaw/files/components/mac/” that is, the concatenation of the System’s 
base path and the application component path. 

To complete the path of the files “ComponentCoreH” and “ComponentCoreCpp” in Figure 46, 
to the previous path (“home/leonidas/yaw/files/components/mac/”), the path associated with the Files is 
concatenated as well: “home/leonidas/yaw/files/components/mac/lmac/”. Finally, the name of the 
attribute “File name” of the File model element (see section 3.1) is concatenated. Thus, the path of the 
File is “home/leonidas/yaw/files/components/mac/lmac/ComponentCore.h”. 

In the case of the FilesFolder “lmac”, it does not have any constraint associated. In this case, 
the path is the System path (Figure 45) plus the application component path (Figure 46) and the name 
of the FileFolder (or File): “home/leonidas/yaw/files/components/mac/lmac/”. 

A different case is the specification of the path for the path “mac”. This path has an associated 
constraint where a $path_system variable is annotated. In this, the creation of the path does not consider 
the base path of the application component (in Figure 46, “yaw/components/files/”). In this case, the 
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System path (Figure 46) is concatenated with the value of the $path_system variable and the name of 
the FilesFolder: 

“home/leonidas/yaw/files/yaw/interfaces/mac/”    and 

“home/leonidas/yaw/files/yaw/common/mac/”. 

 
Figure 46 Application components with different types of model variables. 

When two or more constraints are associated with a File or FileFolder, this means that there are two or 
more Files or FilesFolders with the same name but in different locations (in Figure 46, “mac” 
FilesFolder). 

2.5 PDM Views 
The PDM views describe the platform on which the system application is going to be mapped. It starts 
with the memory partitions, that is, the executables in which the components are grouped, the OSs 
running these executables, the HW resources executing the code and even, the physical devices on 
which these HW resources have been and/or are to be implemented. 

2.5.1 Memory Space View 

The memory space view contains the components that identify the memory spaces, which 
represent the executables of the system. Thus, an executable is a memory space in this methodology. 
These memory partitions are used for grouping application components. The UML elements used in 
this view are: 

• UML Component for modeling the memory partition types and other Components in order to 
define executables, 

• UML Generalization for relating the System component of the ApplicationView with the System 
component of the MemorySpaceView, 

• UML Abstraction for associating application components to memory partitions. 

Class diagrams are used for defining the memory partition types and for capturing the UML 
generalization of the System components. 

Composite structure diagrams are used for defining the memory partition instances. 
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Process modelling 
Memory partitions are modeled by the MARTE stereotype <<MemoryPartition>> applied on a UML 
component (Figure 47): 

 
Figure 47 Memory partitions. 

The executables are defined in a System component included in the view as instances of the 
MemoryPartition components previously defined (Figure 48): 

 
Figure 48 Executables definition. 

This system component is used in order to allocate the application instances defined in the 
ApplicationView to the corresponding memory partitions. This System component should be specialized 
by the System component defined in the ApplicationView. This specialization is modelled by means of 
a UML generalization defined in a UML class diagram. Only one System component should be defined 
within the Memory Space View package (Figure 49): 

 
Figure 49 Specialization of the System component of Memory Allocation View. 

By means of a UML composite structure diagram associated with the System component, the application 
instances defined in the System component of the ApplicationView are mapped onto the memory 
spaces. The application component instances are mapped onto memory partition instances by means 
of UML abstractions specified by the MARTE stereotype <<allocate>>. So, in Figure 50, the yellow 
boxes are application components that are mapped onto memory partitions. 
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Figure 50 Memory partition allocation. 

Composite components Allocation 
When an instance of a composite component is allocated in a memory partition, all the internal instances 
of such composite component are assumed to be allocated in that memory partition, provided that they 
are not allocated specifically to another one. 

2.5.2 SW Platform View 

The SWPlatformView defines the operating systems that are in the HW/SW platform. The operating 
systems are modelled by a UML component specified by the stereotype <<OS>>. The attributes 
associated with this stereotype are: 

<<OS>> 

type:String [1] 

scheduler: Scheduler[*] 

drivers: DeviceBroker [*] 

interProcessCommunication: 
InterProcessCommunicationMechanism [1] 

Table 4: Figure 58 OS stereotype attributes. 

The type of the OS is defined in the type attribute (linux, windows, etc.). 

The attribute scheduler defines the schedulers associated to the OS. The schedulers are 
modelled by the MARTE stereotype <<Scheduler>>. In this component, the scheduling policy can be 
annotated. The scheduling policy is captured in the attributes schedPolicy and otherSchedPolicy. 

The attribute schedPolicy is an enumeration. The possible values considered in this 
methodology are “EarliestDeadlineFirst”, “FixedPriority”, “RoundRobin”… “Other”. In the case the 
value is “Other”, the scheduling policy is annotated in the attribute otherSchedPolicy. 

The driver attribute of the stereotype OS enables association of DeviceBrokers with the OS 
component 

The interProcessCommunication attribute defines the OS services that automatically create 
the communication infrastructure in order to communicate processes in the OS. Thus, code will be 
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created ad-hoc depending on which mechanism is specified for each OS instance. Five types of inter 
process communication mechanism are currently supported for automatic code generation. These 
types are: 

• FIFO channels 

• Sockets 

• message queues 

• shared memories 

• files 

Using this option, designers can easily explore the performance impact that each one has on the 
final implementation and select the most suitable ones for each system. 

 
Figure 51 OS component. 

Drivers 
The OS components can have an associated set of drivers to provide access to peripherals or to 
manage specific processing HW resources of the platform. Drivers are modelled by the MARTE 
stereotype <<DeviceBroker>> applied on an UML component. 

A DeviceBroker driver can have associated properties that enable well-defined driver 
specification: 

• Repository: denotes the address where the driver can be downloaded, 

• Parameter: denotes configuration information for the driver, 

• Device: is the file for the control of the HW resource. 

 
Figure 52 Driver for DSP management. 
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Repository 
The “repository” property denotes the URL address of the repository where the driver can be 
downloaded in order to be installed in an automatic way. This property is captured in a UML property 
included in the DeviceBroker component. The name of this UML property should be “repository”. The 
address is annotated in the attribute “Default Value” of the UML property, by using a UML Literal 
String attached to the “Default Value” attribute. 

Parameters  
The “parameters” property denotes the set of parameters required for a correct configuration of a 
driver. This property is captured in a UML property included in the DeviceBroker component. The 
name of this UMl property should be “parameters”. Then, the set of parameters are annotated in 
an attribute “Default Value” of the UML property, a UML Literal String attached to the “Default Value” 
attribute. 

 
Figure 53 Parameter driver property. 

Device 
The “device” property denotes the device property required for a correct configuration of a driver. 
This property is captured in a UML property included in the DeviceBroker component. The name of 
this UMl property should be “device”. Then, the set of parameters are annotated in an attribute “Default 
Value” of the UML property, a UML Literal String attached to the “Default Value” attribute. 

 
Figure 54 Device driver property. 
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2.5.3 HW Resources View 

The HwResourceView declares all the HW components required for the specification of the platform 
architecture. In the ArchitecturalView, instances of the HW components declared in the HW Resources 
view will be used in the capture of the HW architecture. 

The UML elements used in this view are the following: 

• UML Components for modeling the HW component types,  

• Class diagrams are used for defining the HW components, 

• HW platform architecture, which includes a hierarchical partitioning of the complete HW 
architecture of the system in a single or various components, usually modeled using composite 
structure diagrams, including: 

• Instances of HW resources (processors, memories, buses, network, etc.), 

• Interconnections among these HW resources. 

The MARTE stereotypes used to specify the HW components that can be captured in the 
HwResourcesView are shown in Table 5: 

UML2 Diagram elements MARTE profiles MARTE stereotypes 

Component HRM 

HwProcessor 
HwRAM 
HwROM 
HwCache 

HwBus 
HwMedia 

HwEndPoint 
HwBridge 

HwI_O 
HwISA 

Table 5:  MARTE stereotypes used for refining the HW platform. 

Figure 55 shows a CPU with one ARM9 processor, data and instruction caches, a bus, main memory 
and an I/O device: 

 
Figure 55 HW platform resources. 
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Physical Magnitudes 
HW component attributes can be annotated with values, which can be either a-dimensional or represent 
a physical magnitude. The value of a physical magnitude is annotated in the following way: 

• ValueUnit 

a. 100Mbps 

b. 2KB 

c. 10mW 

 

The accepted units for each attribute and the default physical magnitude are shown in Table 6: 

Attribute Physical magnitude 

frequency GHz 
MHz 
KHz 
Hz 

memorySize TB 
GB 
MB 
KB 
B 

wordWidth b 

BandWidth Gbps 
Mbps 
Kbps 
Bps 

memoryLatency Us 
Ns 

power W 
mW 
uW 
nW 
pW 

energy J 
mJ 
uJ 
nJ 
pJ 

blockSize B 
Words 

 
Table 6:  HW attributes and physical units. 
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HW Processors 
HW processors are modelled as components decorated with the MARTE stereotype 
<<HwProcessor>>. 

Frequency 

The frequency of the processors is captured in the HwProcessor attribute frequency. 

Number of Cores 

The number of cores that a processor has is defined in the HwProcessor attribute nbCores. 

Speed Factor 

A speed factor can be associated to a processor in the HwProcessor attribute speedFactor. 

TDMA Slots 
The HWProcessor may have associated the number of slots when it is directly connected to a 
TDM (in this case, the HW processor is assumed to have the network interface capabilities). This 
property is modelled as the attribute assignedSlots: NFP_Integer. Then, the value is annotated in 
the property “Default Value”. 

Cache 
Each HW processor could have data and instruction cache memories. Thus, each HW processor can 
have associated a set of HwCaches instances. The caches can be associated to an HwProcessor by 
means of the attribute caches of the stereotype HwProcessor (Figure 56). This stereotype attribute 
selects the UML components that are characterized by HwCaches. 

 
Figure 56 Associating caches to an HWProcessor. 

Processor ISA 
The HwProcessor can be more specifically defined by an Instruction Set Architecture (ISA). The MARTE 
stereotype <<HwISA>> is applied to a new UML component. This HwISA component is associated with 
the HwProcessor through the HwProcessor attribute ownedISAs. Two attributes of the HwISA 
stereotype are considered in this methodology: 

• family: NFP_String. Defines the ISA family type, 

• ISA_Type. Specifies the ISA type. 

Currently, the possible values of the family attribute are: 

• DSP, 

• GPU, 

• CortexA9, 



 
 

 
 

Page 48 of 71    
 

• undef. 

The Isa_type includes: 

• RISC: Reduced Instruction Set Computer, 

• CISC: Complex Instruction Set Computer, 

• VLIW: Very Long Instruction Word, 

• SIMD Single Instruction Multiple Data, 

• Other, 

• Undef. 

Processor Caches 
Cache memories are modelled by the MARTE stereotype HwCache. So, Table 7: shows the possible 
values of the type and level attributes of the HwCache stereotype that determine the type of cache. 

HwCache attribute Type of Cache 

level = 1 
& type = data Data cache 

level = 1 
& 

type = instruction 
Instruction Cache 

level !=1 
& 

type = unified 

Unified Cache for caches of level 
more than one 

Table 7:  HwCache attribute values. 

Figure 57 shows an example of caches components: 

 
Figure 57 Cache components. 

Additionally, the caches can be characterized with three additional attributes: the block size (specifies 
the width of a cache block), the associativity and the number of sets. These caches attributes can be 
specified in the attribute structure of the MARTE stereotype HwCache. The attribute structure is typed 
as CacheStructure: 
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HwCache attribute Attributes 

structure 
blockSize 

associativity 

Table 8:  Definition of the structure attribute. 

The specification of these attributes must be annotated as a string. The attributes annotation is shown 
in Figure 54. The attributes are identified as “$BlockSize” and “$Associativity”. Both data annotations 
are specified separated by semicolon. If blockSize has no specified unit, its value is interpreted in 
Words. Else, blockSize must be annotated in B (Bytes), as shown in¡Error! No se encuentra el origen 
de la referencia.: 

  
Figure 58 Specification of the cache attributes blockSize and associativity. 

The word size associated to the cache memory is annotated in a UML property named elementSize 
of the HwCache component (Figure 59). When this attribute is not present, the default value annotated 
is 4 Bytes. The size of the caches is defined in the attribute memorySize. The type of write policy is 
specified in the attribute writePolicy. It can be writeBack or writeThrough. In the case the cache is typed 
as instruction (attribute type), another attribute can be captured; the size of the address. This property 
is annotated in the HwCache attribute addressSize. 

 
Figure 59 Cache specification. 

Buses 
Buses are modelled by the MARTE stereotype <<HwBus>>. Different properties characterize a bus. 

Word width 
The property word width specifies the word width per transaction expressed in bits or bytes and 
it is captured in the HwBus attribute wordWidth. It is expressed in bytes or bits. The default value 
of wordWidth is 8 bytes 
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Bandwidth 
The property bandwidth specifies the number of transactions per second. It is captured in the 
HwBus attribute bandwidth. It is expressed in bits/s, Kbits/s, Mbits/s… The default value of the 
bandWidth is 1 Gbit/s. 

Burst size 
The property burst size denotes the number of event occurrences within a burst.  It is specified in 
the “blockT” attribute of the HwBus profile and it is defined as “$BurstSize=ValueUnit”, with unit in Bytes. 
When this attribute is not present, the default value annotated is 8 words. 

TDMA bus 
For charactering a bus TDMA a set of specific properties should be captured. These properties 
are captured as UML attributes of a HwBus component. These attributes are the following: 

• numberSlots: NFP_Integer 

• timeSlot: NFP_Duration 

• capacitySlot: NFP_DataSize 

• payloadSlot : NFP_DataSize 

• payloadRateSlot : NFP_DataTxRate 

• timeCycle: NFP_Duration 

 
Figure 60 TDM bus component properties. 

Then, in the property “Default Value” of each of the previous attributes, the individual value is 
annotated. 

Bridges 
In order to connect busses, bridge components should be used. These elements are modelled by the 
MARTE stereotype <<HwBridge>>. HwBridges only can connect HwBus component. The only property 
considered is the frequency. 

Memories 
The memories are modelled by the MARTE stereotypes <<HwRAM>>, <<HwROM>> or 
<<HwMemory>> according to the type of memory to considerer. 

Memory size 
The size of the memory is annotated in the attribute memorySize. 
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Memory latency 
The memory latency attribute is annotated as a comment on the memory component as 
“$Latency=ValueUnit”. 

Networks 

As commented above, nodes in a network are stereotyped with <<ComputingResource>>. Nodes 
communicate each other through ports stereotyped as <<CommunicationEndPoint>>. Ports are linked 
by edges stereotyped as <<CommunicationMedia>>. The properties of the link will depend on the kind 
of network used (i.e. Ethernet, internet, Wi-Fi, etc.). Network hierarchy is supported in the same way as 
functional hierarchy. 

I/O Components 
The MARTE stereotype <<HwI_O>> models the HW component used as I/O system device. 

HW components Functional Modes 
HW components can have different associated functional modes that specify different characteristics 
that define the HW component’s behavior according to a set of configuration parameters. These 
functional modes are defined by attributes: frequency, voltage, dynamic power and average leakage. 
In addition, the transitions among the functional modes are characterized as well. The transitions 
among modes are characterized by the time consumption in the mode transition and the power 
consumption in the mode transition. 

In order to model these functional modes, the corresponding HW component should have 
a UML state machine. In a UML state diagram, the HW component modes and the mode transitions 
are captured. The HW component modes are represented as UML states specified by the MARTE 
stereotype <<Mode>>. The mode transitions are represented as UML transitions specified by the 
MARTE stereotype <<ModeTransition>>. 

In order to characterize the functional attributes previously mentioned, some modelling 
elements have been used. The first one is taken from [ASH12], specifically the stereotype 
<<HwPowerState>>, in order to specify the frequency of the HW component in this mode. The 
attribute Pstatic of the HwPowerState enables to capture the power consumption in idle in this 
mode. The dynamic power of the mode is defined by the application of the MARTE stereotype 
<<ResourceUsage>>, specifying the attribute powerPeak. In order to define the last two attributes 
of a functional mode, voltage and average leakage, two UML comments should be associated with 
the corresponding UML state. There, both values are annotated. All the attribute values should be 
annotated as the MARTE specifies in order to define the non-functional properties (value, unit). 

In order to characterize the mode transitions, the power and the time consumption have to be 
defined. The time consumption is defined in the attribute setupTime owned by the stereotype 
HwPowerStateTransition defined in the previously mentioned paper. The power consumption is 
specified by the stereotype <<ResourceUsage>>. 
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Figure 61 HwProcessor mode specification. 

Power Consumption 
HW components have associated static and dynamic power consumption. This value is annotated 
to the HW component as a comment in the following fashion: 

• Static Power: “$StaticPower=ValueUnit”, with Unit in Watts (uW, mW…) 

• Dynamic Power: “$Dynamic Power=ValueUnit”, with Unit in Joules (pJ, nJ…), or in Amperes by 
Hertz. If defined as the latter, another comment specifying the supply voltage of the component 
should be specified as “$Voltage=ValueUnit”, with unit in Volts.  

Furthermore, caches have associated two dynamic energy consumptions: the consumption of a hit 
and the consumption of a miss. They are captured by adding a comment to the related cache as 
“$HitEnergy” and “$MissEnergy”, using the same units as for the general dynamic power. 

Files 
In the same way as the files that store the implementation source-code of the applications are modeled 
as UML artifacts, so the files describing the HW components. These artifacts are specified by the UML 
standard stereotype <<File>>. The Artifacts are specified by a name (annotated in the attribute 
“name”) and in the attribute “File name”, where the name and the extension of the file should be 
included. 

2.5.4 HW implementation view 

Among the HRM stereotypes, there are three which correspond actual with a kind of 
implementation and not to a proper HW resource. They are the following: 

• HwComponent. In S3D, the HwComponent class is associated to a commercial-off-the-self 
component, usually an integrated circuit. When a HW platform object is mapped to a 
HwComponent is because this object is part of the architecture of the commercial device, 

• HwPLD. In S3D, the HwPLD property is associated to an FPGA implementation. In that case, 
the model could be used to automatically generate the HDL description (VHDL or Verilog) to be 
synthesized on the FPGA,  
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• HwASIC. In S3D, the HwASIC property is associated to an application-specific implementation 
of the platform object in an integrated circuit. In that case, the model could be used to 
automatically generate the HDL description (VHDL or Verilog) to be synthesized on the ASIC. 

2.6 PSM View 

2.6.1 Architectural View 

The Architectural view captures the platform specific model (PSM) as a mapping of the PIM onto the 
PDM. The platform specific model is captured as a single or several components containing the following 
items: 

• Mapping of architectural components to memory partitions or directly to OSs in case only an 
executable is going to be generated on this OS, 

• Mapping of memory partitions to OSs or directly to processors in case a bare-metal executable 
is going to be generated on this processor, 

• Mapping of OSs to processors. 

The Architectural View contains the System component, i.e. a component decorated by the <<System>> 
stereotype. The System component of the architectural view represents the platform specific model. 
Composite structure diagrams are associated to the system component, and used to capture the 
HW/SW architecture of the platform as it was shown in Figure 10 and Figure 11. Mapping is made by 
means of UML abstractions decorated with the MARTE <<allocate>> stereotype. 

Interfaces between the system and the environment are mapped to the high-level driver. It will 
make use of the low-level driver of the HW peripheral in the corresponding OS where the interface is 
going to be called. This driver should be provided apart. In S3D this information is taken from the IP-
XACT [IPXA14] description of the device. 

Concrete information out the physical implementation of the HW resources can be modeled by 
using the three kind of implementation alternatives considered, an FPGA (<<HWPLD>>), an ASIC 
(<<HWASIC>>) or a COTS (<<HWComponent>>). 

An application component can be mapped directly to an implementation alternative as shown 
in Figure 62. This should be interpreted as a direct implementation in HW of the corresponding 
functionality. This implies RTL synthesis, if the VHDL code for the application component is provided, 
or behavioral synthesis if the C/C++ code is provided and it satisfies the additional requirements 
imposed by the behavioral synthesis tool. 

2.7 Verification View 
The Verification View defines the structure of the system environment. The environment has to be 
thoroughly defined in order to enable the execution of the performance estimation tools during the 
design process with appropriate inputs. 

The environment structure consists of environment components that interact with the system. 
Additionally, these environment components have the associated functional elements that define their 
functionality. The m ode l ing  o f  the  environment makes use of a set of stereotypes of the UML 
standard profile UTP. 
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Figure 62 Application mapping for HW synthesis. 

2.7.1 Environment components 

The environment components represent the devices that interact with the System. The environment 
components are modelled as UML components. This set of UML components is specified by 
means of stereotypes included in the standard UML Testing Profile (UTP). The components that 
compose the system environment are defined in a UML class diagram. These components are 
specified by the UTP stereotype <<TestComponent>>, as shown in Figure 67: 

 
Figure 63 Environment component. 

Environment component Functionality 
Each environment component has an associated specific functionality. This functionality is modelled 
as UML components specified by the MARTE stereotype <<RtUnit>> and the UTP stereotype 
<<TestComponent>>, as shown in Figure 64. The environment application components should be 
included in the ApplicationView like the rest of the application components of the system. 

 
Figure 64 Environment application components. 
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All these RtUnit-TestComponent components can have the same associated modeling elements 
(threads, file folder, files) as the application components. Each application component has associated 
C/C++ files. These C/C++ files are file artifacts defined in the Functional View. The files should be 
specified by the UML standard stereotype <<File>> and the stereotype <<ApplicationFile>>. The files 
used for defining the functionality of the environment should be typed as environment=true. The 
assignation of the file artifacts is done through a UML abstraction specified by the MARTE stereotype 
<<allocated>> (Figure 65). 

 
Figure 65 Environment Application components with associated Files. 

Environment component structure 
Each environment TestComponent component has internal parts that are the environment application 
components. The internal functional structure of the environment TestComponent component is 
captured by using instances of RtUnit-TestComponent application components (Figure 66) in a 
Composite structure diagram associated with the environment TestComponent component. 

 
Figure 66 Application instances of an environment component. 

Environment component structure: ports 
The communication is established through ports. The ports specify the required/provided interfaces 
by means of which the components interact among them. The ports are specified by the MARTE 
stereotype, being defined as provided or required, where an interface is associated. 

The ports that have been specified by the ClientServerPort stereotype are those of the 
environment component (TestComponent), as can be seen in Figure 67 (Camera TestComponent). 
These TestComponent ports are connected to the internal application instance ports by using 
UML connectors (Figure 71). These application instance ports have to be named similarly to the 
TestComponent port that they are connected to (Figure 67). 
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Figure 67 Environment Application components. 

2.7.2 Environment structure 

The environment structure is composed of instances of environment components connected to the 
System. The environment structure is modelled in a UML component specified by the UTP stereotype 
<<TestContext>>. The environment structure is modelled in a UML composite structure diagram 
associated with this TestContext component. This composite structure diagram contains instances 
of TestComponents and a property typed by a System component; specifically, the System component 
defined in the Application View since the port that interacts with the environment is defined in this 
System component included in this model view; this System property should be specified by the UTP 
stereotype SUT (System Under Test). 

 
Figure 68 Definition of the environment structure 

Then, in order to define the semantics of channels among the TestComponents and the System, UML 
connectors should be specified by the stereotype Channel, specifying the type of communication 
media defined in the CommunicationView. 

 
Figure 69 Generalization of Environment structure with the System component of the 

MemorySpaceView. 
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2.7.3 Memory allocation 

The Environment elements must be allocated to memory spaces. The TestContext component 
has to be associated with the System of the MemorySpaceView. This System component should be 
specialized by the TestContext component defined in the VerificationView. This specialization is 
modeled by means of a UML generalization defined in a UML class diagram (Figure 69). 

 

Then, the allocation on memory spaces of the environment component (instances of TestComponent 
components) can be done (Figure 70). 

 
Figure 70 Allocation of environment component to the memory partitions. 

This view is not mandatory. The reason is that the methodology considers an alternative solution. 
As described above, different files can be associated with the system. Using this feature, systems 
with minimal environments can be modelled directly indicating the source file with the environment 
code instead of creating a complete specific view. 

 

2.7.4 Modelling Data Dependencies  

S3D supports data dependencies analysis in order to verify whether timing constraints are fulfilled or 
not. In S3D methodology, data dependencies and data paths are represented with UML sequence 
diagrams. For this analysis S3D uses traces generated during the execution of the application, which 
are generated using the Common Trace Format [CTF13], a standardized binary trace format designed 
for a fast and efficient writing while using few disk space. 

Data dependencies are represented using UML Sequence diagrams and included inside the verification 
view.  

Different parts (i.e. component instance, that is, property) are represented with lifelines, one per part 
involved in the data path to be analyzed. Lifelines are related to their corresponding properties through 
the “Represents” box, as can be seen in Figure 71. 
An execution of a service or function is represented over the lifeline with an Action Execution 
Specification. Since a specific part (component) can only have one main function, if the Action Execution 
is not pointed by a service call, it will unequivocally represent the main function of the component. On 
the contrary, if the Action Execution is directly pointed by a service call, it represents that specific service 
in question. For periodic functions, each Action Execution represents one iteration of the total run of the 
service. 
Service calls are represented using Message Sync/Async. Synchronous messages are represented with 
filled arrows, while asynchronous messages are depicted with empty arrows. Both can be used, since 
the synchronicity does not depend on the type of the message, but on the operation properties. 
Synchronous messages only allow adding a temporal restriction about when the service is requested 
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from the client, while asynchronous messages also enable specifying when the server executes the 
service.  
Furthermore, is important to consider that synchronous messages coming from an Action Execution can 
only point to another Action Execution, whereas asynchronous messages can point directly to the 
lifeline. Thus, a call pointing to the lifeline and one pointing to an Action Execution which finishes without 
producing any call are identical in terms of data path analysis, and if not required, the omission of 
irrelevant Action Execution boxes is recommended for diagram simplicity. Let us use the following 
diagram to illustrate this. 

 
Figure 71 Linkage of lifelines to parts  

As shown in Figure 72, first Action Execution represents the run of the main function of sens_c1 
component. This function makes a synchronous call to service trSensorData from loc_c1 component, 
passing the resulting data to the main function of loc_c1. This main function makes an asynchronous 
service call to trHighFreqBCP, which passes resulting data to the main function of loc_c2. Both 
trSensorData and trHighFreqBCP are executed, but since trHighFreqBCP is executed from an 
asynchronous call, its Action Execution box can be omitted, simplifying the diagram. Therefore, if 
possible, asynchronous calls are recommended. 

When placing the messages from the client to the server lifelines, a pop-up will appear asking 
for the operation requested. If the operation has already been specified in the Component (or its 
generalizations, or the generalizations of its generalizations, i.e. components or interfaces), it will appear 
in the list. 
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Otherwise, a new operation should be created, placing the name of the operation as shown in 
Figure 74. Note that, in that case, you also have to navigate through the model to edit the new operation 
just created, in order to add its details (i.e. function arguments). 

 
Figure 72 Action Execution Specification usage 

 

Figure 73 Existing message operation assignment  

Once all service calls have been placed in the diagram, a Time Constraint must be added at the 
beginning of the last Message of the chain, and maximum and minimum time values are specified as 
described in Figure 75 (use a LiteralString value, as shown). 

It is important to notice that the Y coordinate of the diagram (vertical) corresponds with time (or 
causality). The order of the calls in the diagram must correspond with its requested execution during 
real operation: if call to A must happen before call to B, A must be higher than B in the diagram. 
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Figure 74 Creating new message operation assignment 

 

Figure 75 Time constraint specification in the sequence diagram 

3 S3D System Modeling under different MoCs 

In this document, the modeling of interfaces among functional components in the S3D framework is 
described. The goal is to provide the system engineer with a flexible modeling infrastructure able to 
support different system engineering methodologies. Although in S3D the fundamental object is the 
hierarchical component, and, as such, it is a Component-Based System Modeling (CBSM) framework, 
S3D can support other system modeling paradigms like Object-Oriented Modeling or Actor-Oriented 
modeling in a uniform and unified way. 
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3.1 Object-Oriented Modeling 

In Object-Oriented Modeling (OOM2), the system is conceived as a collection of objects. Objects are 
instantiation of classes, which encapsulate data and methods. No restrictions are put on the way the 
objects interact among them, either by calling methods from other objects or global and static variables. 
Concurrency is not made explicit. Thus, a class may trigger a large number of threads or may be a 
passive unit implementing methods to be called from external objects. As the main communication 
mechanism is the function call waiting for the returning data, active threads jump from one object to the 
other freely. This makes very difficult to analyze the actual behavior of the system being modeled. As 
each object may interact with any other, understanding the active threads in the system is not easy. In 
the same way, apart from inheritance, hierarchy is not visible in many cases. This makes OOM hardly 
scalable and reusable. The problem with this kind of SW modeling have been highlighted many times 
[Lee06]. 

Nevertheless, S3D CBSM can support OOM directly as components are objects and can be 
used as such when the restrictions to the communication and synchronization mechanisms among 
components are released. A CBSM methodology such as S3D, imposes conditions to the objects in 
order to be considered as components. While an object does not have any restriction in the way it 
interacts with other objects, a component encapsulates functionality and interact with other components 
using explicit communication interfaces. 

3.2 Actor-Oriented Modeling 

In Actor-Oriented Modeling (AOM3), the system is conceived as a collection of concurrent components 
called actors. Actors encapsulate data and functionality and interact each other through predefined 
communication patterns, which may lead to concrete Models of Computation [LeNe04]. Actor-Oriented 
modeling intends to highlight ‘concurrency, temporal properties, and assumptions and guarantees in the 
face of dynamic system structure’. Although it is more restrictive than OOM, the benefits that AOM 
provides justify its use. Examples of AOM frameworks and languages are Simulink4, Labview5, 
Modelica6, VHDL [TTOV97], Verilog7, SystemC8, and Ptolemy9. 

3.3 Interface modeling 
In this document, we will show that the S3D CBSM can model systems in a general and unified way 
able to support both OOM and AOM under different Models of Computation [LeSa96]. This is achieved 
by defining the properties of the functions in the provided/required interfaces. In some cases these 
properties my affect partly the programming of the component. 

In the most general case, a required interface will call an interface function: 

InterfaceFunction(X1, … Xn, Z1, … Zm); 

                                                      
 
2 https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design 
3 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.230.1295&rep=rep1&type=pdf 
4 https://es.mathworks.com/products/simulink.html 
5 http://www.ni.com/en-us/shop/labview.html 
6 https://openmodelica.org/ 
7 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1620780 
8 http://accellera.org/downloads/standards/systemc 
9 http://ptolemy.eecs.berkeley.edu/ptolemyII/ 
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Where Xi are the input variables to the function and Zi are the output variables. Output variables 
are those that are changed as a consequence of the execution of the function. Input variables are those 
that may affect the final value of an output. Input variables can be passed by values or by reference. 
Output variables can only be passed by reference. An actual parameter can be used as input and output 
to a function simultaneously: 

Xi ≡ Zj 

3.3.1 Properties of the services of the interface 

Each interface function is stereotyped as a Real-Time service (‘RtService). Its properties are defined by 
the following attributes: 

The enumeration ‘ConcurrencyKind’ of the ‘concPolicy’ attribute [0..1]. 
The ‘ConcurrencyKind’ enumeration has three possible values: 

reader. The execution of the service has no side effects. Consequently, the service can be provided 
concurrently to any other reader service (with the concurrency limit defined by the srPoolSize attribute 
of the corresponding component). 

writer. The execution of the service may have side effects. Consequently, once the service is provided 
any call to any other service should be blocked. 

parallel. The service can be provided concurrently (with the concurrency limit defined by the srPoolSize 
attribute of the corresponding component). 

The enumeration ‘CallConcurrencyKind’ of the ‘concurrency’ property [1] = sequential. 
Any MARTE RtService is an UML ‘BehavioralFeature’ and, as such, inherits the enumeration 
‘CallConcurrencyKind’ of the attribute ‘concurrency’: 

sequential. No concurrency management mechanism is associated with the BehavioralFeature and, 
therefore, concurrency conflicts may occur. Instances that invoke a ‘BehavioralFeature’ need to 
coordinate so that only one invocation to a target on any ‘BehavioralFeature’ occurs at once. 

guarded. Multiple invocations of a ‘BehavioralFeature’ that overlap in time may occur at one instance, 
but only one is allowed to start execution. The others are blocked until the performance of the currently 
executing ‘BehavioralFeature’ is completed. 

concurrent. Multiple invocations of a ‘BehavioralFeature’ that overlap in time may occur to one instance 
and all of them may proceed concurrently. 

The following table resumes the behavioral interpretation for all the combination possibilities of 
the two attributes. As a result, regarding how many services can be attended in parallel in the port, the 
12 possibilities can be reduced to only two: 

G: Only one call to the service can be attended each time. 

C: As many calls of the service can be attended in parallel as determined by the srPoolSize 
attribute of the corresponding component. 

As the ‘concPolicy’ attribute can also be applied to a PpUnit with the ‘CallConcurrencyKind’ enumeration, 
the value given to the PpUnit attribute will prevail to the value given to the attribute ‘concurrency’ of any 
RtService in any interface of the RtUnit. 
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interface or 

another in the 
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guarded 

G: Only one call 
to the service is 
attended each 
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service can be 
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parallel to other 
services in the 
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be executed in 
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concurrent 
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to the service 
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and the service 

can be executed 
in parallel to any 
other service in 

the same 
interface or 

another in the 
same 

component 

C: Parallel calls 
to the service 
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but the service 
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executed in 

parallel to any 
other service in 

the same 
interface or 

another in the 
same 

component 

C: Parallel calls to 
the service can be 
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executed in 
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the service 
cannot be 
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another in the 
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Table 9: Interpretation of the combinations of concurrency-related attributes. 

The enumeration ‘ExecutionKind’ of the ‘exeKind’ attribute [0..1]. 
The ‘ExecutionKind’ enumeration has three possible values: 

deferred. The call to the service is stored in the queue of the behavior attached to the service. 

remoteImmediate. The execution is performed immediately by the computing resource on which the 
called component has been mapped. 
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localImmediate. The execution is performed immediately by the computing resource on which the 
calling component has been mapped. This possibility is not yet considered. 

The Boolean attribute ‘isAtomic’ [1] = false. 
When true, implies that the RtService executes as one indivisible unit, non-interleaved with other 
RtServices. This attribute does not affect the model of computation involved in the 
communication/synchronization mechanisms of the components. 

The enumeration ‘SynchronizationKind’ of the ‘syncKind’ attribute [0..1]. 
The ‘SynchronizationKind’ enumeration has four defined values: 

synchronous. The client waits for the end of the invoked behavior before continuing its own execution. 

asynchronous. The client does not wait for the end of the invoked behavior to continue its own 
execution. 

delayedSynchronous. The client continues to execute and will synchronize later when the invoked 
behavior returns a value. 

rendezVous. A behavior in the server waits for the client to start executing. 

3.3.2 Properties of the provided port 

In case any of the RtServices of the interface is attributed with an execution kind ‘deferred’, then the 
provided port will provide a buffer to store the calls in the queue. The port will be stereotyped as 
‘StorageResource’ and their properties defined by the following attribute: 

The integer attribute ‘queueSize’ [0..1]. 
The integer value fixes the maximum size of the queue. 

The not standard enumeration ‘FullPoolPolicyKind’ of the not standard ‘fullPoolPolicy’ attribute [0..1]. 
The ‘FullPoolPolicyKind’ enumeration has five defined values: 

block. The call is not stored until a previous call is attended and a free position in the pool made 
available. 

removeFirst. The first call to be attended depending on the scheduling policy selected is removed and 
the new call stored. 

removeLast. The last call to be attended depending on the scheduling policy selected is removed and 
the new call stored. 

flush. All the previous calls are removed from the FIFO and the new call stored. 

other. Any other scheduling policy. 

3.3.3 Properties of the required port 

When a required port calls a service, the call can be attended or not. The following attribute specifies 
the policy to follow in that case: 

The enumeration ‘PoolMgtPolicyKind’ of the not standard ‘notAttendedService’ attribute [0..1]. 
The ‘PoolMgtPolicyKind’ enumeration has four defined values: 

infiniteWait. If the call is not attended, the client component waits indefinitely until the call is attended. 
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timedWait. If the call is not attended, the client component waits for bound time until the call is attended. 
At the end of the waiting time, if the call is not attended the behavior is determined by the ‘retry’ attribute. 

dynamic. If the call is not attended, the client component continues execution. 

exception. If the call is not attended, the client component raises an exception. 

other. Any other policy. 

The integer attribute ‘retry’ [1] = 0. 
The integer value fixes the number of times the client will repeat the call. If the call is not attended in 
any case, the client raises an exception which will determine the policy to follow. 

3.4 Models of Computation 
Depending on the properties defining the services and the provided and the required ports, different 
programming models corresponding to different Models of Computation (MoC) can be supported. Some 
fundamental MoCs require strict point to point synchronization/communication interfaces, that is, each 
interface involves a single provider component and a single required component. We will address them 
next. More complex communication interfaces will be addressed afterwards. 

3.4.1 Point to point interfaces 

Function Call/RPC/RMI 
Under the Function Call (FC) MoC, the calling thread is stopped until the required function call is 
attended and the output data read as shown in Figure 76. Nevertheless, in order to avoid deadlocks, a 
timeout can be defined. 

 
Figure 76 RPC MoC. 

Table 10: shows the different alternatives. The RtService can be guarded or concurrent. In the second 
case, the server may attend several calls from the same component by parallel threads or several times 
the same service if repetitive calls are not filtered. 

Required Port RtService Provided Port 
MoC NotAttendedService retry concurrency exekind syncKind queueSize FullPoolPolicy 

infiniteWait none G or C rem.Im. sync. none none exactly once 
infiniteWait none G or C rem.Im. async. none none at most once 

dynamic none G or C rem.Im. sync. none none exactly once 
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dynamic none G or C rem.Im. async. none none at most once 
timedWait 0 G or C rem.Im. sync. none none exactly once 
timedWait 0 G or C rem.Im. async. none none at most once 
timedWait ≠ 0 G or C rem.Im. sync. none none at least once 
timedWait ≠ 0 G or C rem.Im. async. none none maybe once 

Table 10: RPC/RMI MoC. 

Rendezvous (RV) 
This is the fundamental communication/synchronization pattern for the Communicating Sequential 
Processes (CSP) MoC. In this case, the calling function requires the execution of the called function, 
which has to be executed by a main thread in the component providing the function: 

 
Figure 77 Rendezvous MoC. 

The rendezvous ensures that two active tasks synchronize and interchange data at the same time. After 
the rendezvous, both threads are free to continue execution. 

In order to reduce the interaction time, the execution time of the called function should be 
minimized. In most cases, the function is just instrumental to interchange data, Xi in one direction and 
Zi in the opposite. In some cases in which the execution time of the required function is large, the calling 
function sends the data to be processed and gets the data from the previous computation, which have 
been stored by the provider component after the previous call. 

CSP may lead to deadlocks. In order to avoid them, a time-out can be defined. If ‘retry’ is set to 
‘0’, the calling function waits to be accepted during the timeout period. If it elapses, the function continues 
execution. If ‘retry’ is set to ‘n’, the function will be called at least ‘n’ times the timeout elapses. None of 
these cases corresponds to a CSP system. 

The following table shows the different alternatives: 

Required Port RtService Provided Port 
MoC NotAttendedService retry concurrency exekind syncKind queueSize FullPoolPolicy 

infiniteWait none G or C rem.Im. rendezvous none none CSP 
timedWait 0 G or C rem.Im. rendezvous none none RV 
timedWait ≠ 0 G or C rem.Im. rendezvous none none RV 

Table 11: RV MoC. 
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Data Flow (DF) 
In a DF system, components communicate through data, which flow from the inputs of the system to 
internal components, among them and to the outputs. Thus, interface functions do not have output 
arguments. Outputs will be generated by the component receiving the data and sent, in a similar way, 
to another component or to the external environment. DF communication is asynchronous. Components 
may generate data and consume data at any time. This means that in the general case, a buffer is 
needed to store data when, during some period, there are more date produced than consumed. 

When the buffers between components never gets full (infinite capacity), DF becomes a Khan 
Process Network (KPN). In real systems, buffers will have a finite size meaning that at certain points in 
time they may get full. In order to keep the properties of a KPN, the calling thread should stop. This may 
lead, eventually, to deadlocks. 

 
Figure 78 Data Flow MoC. 

When the interface function is called, the call is stored in the buffer to be attended afterwards. In that 
case, the execution of the calling thread continues. In the KPN MoC, the ‘NotAttendedService’ attribute 
is ‘infiniteWait’. 

It is worth mentioning that when the execution time of the provided service is smaller than the 
rate at which it is called and the provided service changes the internal state of the component (i.e. a 
write function writing a data to be consumed by an internal thread in the component), the DF mechanism 
so defined does not ensure that a write-write race may occur. If this is the case, the providing RTService 
should be annotated as ‘rendezvous’. 

If the component behaves as an actor in which its internal behavior is executed each time a 
certain number of interface functions in its inputs have been called generating in each output a certain 
number of function calls, the MoC becomes Synchronous Data Flow (SDF). Depending on how many 
data are consumed (produced) in each input (output) each time, several variants of the fundamental 
SDF appear. If the number of data consumed (produced) in each input (output) is constant, the MoC is 
called multi-rate DF, regular DF or just SDF. A special case is when the rate in all the inputs and outputs 
is the same. The MoC in this case is called single-rate DF. If these rates change but following a static 
cyclic sequence of constant values, then the MoC is called cyclo-static DF. In all these cases, it is 
possible to find a static scheduling minimizing the required buffer sizes. This is not possible in the case 
of dynamic rates in dynamic Data Flow (DDF) systems [BELP96]. 
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The maximum number of function calls to be stored is defined with the attribute ‘queueSize’. It 
may happen that a higher production than consumption rates produces the buffer to get full. The policy 
to follow in that case is determined by the ‘fullPoolPolicy’ attribute. If the policy is ‘block’, and a new data 
is produced, the component is blocked until the buffer is read and, therefore, new free space is made 
available. The way around, if the thread in the provided component tries to read from an empty buffer, 
it is blocked until new data are produced and written. In both cases, a deadlock may be produced. 

There are two ways to avoid deadlocks. The first one is to choose any other ‘FullPoolPolicyKind’ 
value. In this case, no new call is blocked but previous calls might be lost. The other possibility is to 
specify a timeout. In that case, if the timeout elapses, then the call is aborted if ‘retry = 0’ or a new call 
is tried if ‘retry ≠ 0’. None of these two ways corresponds to KPN or SDF models. 

The following table shows the different alternatives leading to KPN, SDF or simple DF: 

Required Port RtService Provided Port 
MoC NotAttendedService retry concurrency exekind syncKind queueSize FullPoolPolicy 

infiniteWait none G or C deferred async. > 0 block KPN/SDF 
infiniteWait none G or C deferred async. > 0 (any other) DF 

dynamic none G or C deferred async. > 0 any DF 
timedWait 0 G or C deferred async. > 0 any DF 
timedWait ≠ 0 G or C deferred async. > 0 any DF 

Table 12: DF MoC. 

Discrete Event (DE), Time-Triggered (TT), Timed Data Flow (DTF) 

In DE10 systems, components react to events in their inputs. An event is an instantaneous indication to 
trigger a reaction. In S3D this can be modeled with an interface function without arguments, such as: 

Notify(); 

In some cases, an event is a change in the value of a data. In some other cases, just the writing of a 
data with a new value even if it is the same as the previous one may be considered an event. It may 
happen that in case the receiving component it not available at the instant the event is notified, it get 
lost. 

DE systems may be non-deterministic producing different results depending on which 
component is executed first when two simultaneous events occur triggering both. In order to avoid non-
determinism in DE systems, a global control component can be used. The functional components 
divides its behavior in two phases. In the first one, the component reacts to the events in the inputs and 
compute results. In the second phase, it up-dates values in the outputs. The control component is in 
charge of synchronizing the evaluation-update phases of all the components. 

In the TT11 MoC, the moment in which each component reads the inputs and the time in which 
it delivers the outputs are known in advance. In some cases, a clock is used in order to synchronize the 
input and output times of all the components. 

The Timed-Data Flow (DTF) MoC is basically a TT MoC in which the frequency of each 
component may by different depending on the input and output rates. This is the MoC used by many 
analog simulators like Modelica, Simulink and SystemC-AMS. In order to accelerate simulation, the 

                                                      
 
10 https://pdfs.semanticscholar.org/5a22/af628426a44c0bcbddd26b4c31c44a99af35.pdf 
11 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=739743 
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frequency of the underlying clock in each component can be decided dynamically, leading to the 
Dynamic Timed Data Flow (DTDF12) MoC. 

The following is the representation of the interfaces in DE, TT and TDF: 

 
These systems requires no blocking attributes at dispatching and returning and no buffering in the 
provided interface: 

Required Port RtService Provided Port 
MoC NotAttendedService retry concurrency exekind syncKind queueSize FullPoolPolicy 

dynamic none G or C rem.Im. async. none none DE/TT/TDF 

Figure 79 Discrete-Event, Time-Triggered and Timed Data-Flow MoCs. 

Synchronous Reactive (SR) 
In a SR system, the activity in the inputs, in our case, the calls for required functions, trigger the internal 
activity among components until the system reaches a stable state in which no further function calls are 
made. This time, which in reality will be finite, is considered cero and all the activities performed are 
considered synchronous each other. Only then, new activities in the inputs are allowed. From this point 
of view, this model of computation does not impose any restriction to the properties in components and 
interfaces. 

  

                                                      
 
12www.accellera.org/images/resources/articles/amsdynamictdf/Whitepaper_SystemC_AMS_Dynamic_TD
F_September_2011.pdf 
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