

The S3D Modeling Methodology v1.0
February 2020
Javier Merino
Eugenio Villar
Hector Posadas

Document history

6-FEBRUARY-2019 FIRST DRAFT BY E. VILLAR AND H. POSADAS
15-OCTOBER-2019 DRAFT VERSION V.02 BY J. MERINO
7-FEBRUARY-2020 REVISION BY E. VILLAR

Page 3 of 71

Executive summary

In this document, the S3D modeling methodology is detailed. The methodology is built up on the
previous methodology refined in the Pharaon and Contrex projects. It is derived from the requirements
imposed by the evolution of embedded systems from connected but isolated boards in a product to a
component of a network of distributed devices connected among them and with the cloud in order to
provide a certain value-added service to the final users. This radical new context requires the capability
to model complex, heterogeneous, distributed systems while ensuring scalability and reusability.

To achieve these goals new modeling methods have been developed. In order to improve
scalability, hierarchical partition of both the application functionality and the executive HW/SW platform
have been better supported. In order to improve reusability, the concept of generic component has been
defined. In addition, these generic components are grouped in libraries so that they can be reused as
many times as required.

The new S3D modeling methodology requires an adaptation of the associated tools, VIPPE for
system simulation and performance analysis and eSSYN for SW synthesis. These new versions of the
tools are being assessed on the Thales FMS Use Case. Plans exist to apply them in other use cases,
such as the Nokia Base Transceiver Station.

Page 4 of 71

Table of Contents

Document history ... 2

Executive summary ... 3

Table of Contents .. 4

Acronyms ... 6

1 Introduction ... 7

1.1 System design methodology ... 8

1.2 System modeling requirements ... 10

1.2.1 Simplicity .. 11

1.2.2 Scalability ... 12

1.2.3 Separation of concerns .. 12

1.2.4 Design-Space exploration ... 13

1.2.5 Reusability ... 13

2 System Modeling .. 13

2.1 Fundamental elements .. 14

2.1.1 Platform-Independent Model ... 14

2.1.2 Platform Description Model ... 17

2.1.3 Platform-Specific Model ... 20

2.2 D&V Views ... 20

2.3 Components Library .. 21

2.3.1 Active Components ... 22

2.3.2 Passive Components ... 23

2.3.3 Subsystems ... 24

2.3.4 Data Types .. 24

2.3.5 Generalization of Data Types .. 28

2.3.6 Files ... 29

2.3.7 Interfaces ... 30

2.3.8 Libraries ... 33

2.3.9 Auxiliary Files ... 33

2.4 Application View ... 34

2.4.1 Components .. 34

2.4.2 Ports .. 34

2.4.3 Connectors .. 34

2.4.4 Application Architecture ... 35

Page 5 of 71

2.4.5 System ports: I/O communication .. 35

2.4.6 Periodic Application Instances ... 35

2.4.7 System Files .. 36

2.4.8 Concatenation of paths .. 39

2.5 PDM Views .. 40

2.5.1 Memory Space View .. 40

2.5.2 SW Platform View .. 42

2.5.3 HW Resources View .. 45

2.5.4 HW implementation view ... 52

2.6 PSM View .. 53

2.6.1 Architectural View .. 53

2.7 Verification View ... 53

2.7.1 Environment components .. 54

2.7.2 Environment structure ... 56

2.7.3 Memory allocation .. 57

2.7.4 Modelling Data Dependencies ... 57

3 S3D System Modeling under different MoCs ... 60

3.1 Object-Oriented Modeling .. 61

3.2 Actor-Oriented Modeling .. 61

3.3 Interface modeling ... 61

3.3.1 Properties of the services of the interface ... 62

3.3.2 Properties of the provided port .. 64

3.3.3 Properties of the required port ... 64

3.4 Models of Computation .. 65

3.4.1 Point to point interfaces ... 65

4 References ... 70

Page 6 of 71

Acronyms

AL ACTION LANGUAGE USED TO SPECIFY THE FUNCTIONALITY
ASHW APPLICATION-SPECIFIC HARDWARE
ASIC APPLICATION-SPECIFIC INTEGRATED CIRCUIT

CPSOS CYBER-PHYSICAL SYSTEMS OF SYSTEMS
CPU CENTRAL PROCESSING UNIT
DSP DIGITAL SIGNAL PROCESSOR
GPU GRAPHICS PROCESSING UNIT
HDS HARDWARE-DEPENDENT SOFTWARE

IP-XACT IEEE STANDARD FOR IP PACKAGING, INTEGRATION AND REUSE
ISA INSTRUCTION SET ARCHITECTURE

MDA MODEL-DRIVEN ARCHITECTURE
MOC MODEL OF COMPUTATION
PIM PLATFORM-INDEPENDENT MODEL
PDM PLATFORM DESCRIPTION MODEL
PSM PLATFORM-SPECIFIC MODEL
S3D SINGLE-SOURCE SYSTEM DESIGN FRAMEWORK DEVELOPED BY THE UNIVERSITY OF CANTABRIA
SOS SYSTEM-OF-SYSTEMS
UC UNIVERSITY OF CANTABRIA

Page 7 of 71

1 Introduction

Model-Driven Software Engineering has proven to be a powerful approach to deal with the increasing
complexity of software development [BCW12]. It can be adapted to different design contexts and
domains, being compatible with methodologies like Agile [Amb15] and DevOps [NMP17]. Currently,
most systems involve just a small number of computing resources, such as a datacenter processing the
voice from a smartphone and providing a voice-to-text service, or the distance sensors in a car
connected to an Electronic Control Unit providing an automatic parking service to the driver. In these
examples, specifying the complete service, deciding which functionality to execute in each node, and
programming the corresponding application, although reasonably complex, are affordable tasks.
However, services in a fully interconnected world will be composed of many SW components deployed
on multiple devices of many kinds. All these electronic devices and the distributed SW they execute
compose a system of a high complexity in terms of the distributed executive platform, the functionality
it implements and the strong interaction with the physical environment that the system realizes. An
additional, important aspect to consider is the interaction between the system and the humans both as
users or involved directly or indirectly in its operation (humans in the loop). Is in this heterogeneous,
multi-domain environment where the abstraction, inter-operability and reusability capabilities of Model-
Driven Engineering become especially relevant. In this new context, Software Engineering is still an
important part of the problem but no longer the only one. Understanding the underlying infrastructure of
hardware devices and networks on which the functionality is deployed as well as its interaction with the
physical world and the human being are of paramount importance.

The tendency in the last years has been towards a specialization of SW development methods
and languages to specific domains, leading to a diversity of Domain-Specific Languages (DSLs)
[BCW12]. Nevertheless, the evolution commented above requires of new, holistic, mega-modeling
methodologies able to model the complete system and its interaction with the physical environment in a
unified way, thus supporting the verification of the functional requirements and the analysis of the non-
functional requirements such as execution times, delays, data movement, power consumption, etc.
Among these DSLs, UML/MARTE has been proposed for the modeling and analysis of real-time and
embedded systems. The profile covers both system engineering by supporting the general resource and
component modeling and software engineering, by supporting the high-level application modeling and
the detailed software resource modeling. In addition, UML/MARTE covers architectural mapping and
design-space exploration by supporting the description of the computing architecture by the detailed
hardware resource modeling [SeGe14].

The Microelectronics Group of the University of Cantabria (UC) has a large experience in
system modeling using UML/MARTE. The modeling methodology has been improved along the time
[PHV10] [MMW11][HPP12][GHH13][HPP14][PNP14][HMV17] extending its modeling capabilities. The
final goal is to support efficient modeling of services implemented as Cyber-Physical Systems of
Systems (CPSoS) [MVH17]. In this document, the S3D system modeling methodology based on
UML/MARTE is proposed able to support efficient SoS modeling. In the next section the proposed
system design methodology is described. The main improvements to current common practices are
highlighted. S3D is a Single-Source, System Design Framework where all the relevant information about
the system being designed is centralized in a single model. The rationale behind this approach comes
from the fact that modeling is costly and error prone. The main goal of the S3D single-source approach
is to minimize the modeling effort as much as possible. In order to facilitate capturing all the relevant
information about the system for different purposes in a coherent, accessible and understandable way,
the information is organized in views. Each view encloses all the required information about a particular

Page 8 of 71

aspect of the system. As each view is orthogonal to the others, they support separation of concerns,
which is an important principle for designing high quality software systems and is both applied in the
Model-Driven Architecture (MDA) and Aspect-Oriented Software Development (AOSD) [Lap07]
[TAH07]. From the central repository, different tools can be used in order to perform the different design
tasks such as verification, simulation, performance analysis, schedulablility analysis, etc. Finally, when
the design is considered correct, satisfying all the functional and extra-functional constraints, the code
to be deployed on the different computational nodes of the distributed platform is automatically
generated, as shown in Figure 1:

Figure 1 The S3D framework.

In this document, the S3D modeling methodology is described. The example used along the text is a
Flight Management System (FSM) proposed by Thales as Use Case in the MegaMart project.

1.1 System design methodology
The modeling methodology proposed may be used in many different system design and verification
methodologies. We will refer to the V-Model, to which the modeling methodology, as part of the S3D
Framework, will be applied. The traditional V-Model is drawn in Figure 2. The descendent (left-side)
steps correspond to design activities at system, architecture and component levels) while the ascendant
(right-side) steps correspond to verification steps. Independently of the quality of the software testing
methods used, software verification is usually limited to just functional verification, that is, the code is
executed in the same machine it was developed under a collection of tests. In this way, design tasks
such as design-space exploration, code optimization, architectural mapping, etc. in which performance
metrics play an essential role in taking the right decisions, can be done only during the prototyping
phase. In most cases, this is too late and any change would require a high re-designing effort. This
problem is even harder in current heterogeneous architectures in which, even in a single platform, there

Page 9 of 71

is a number of different computational devices (big-little CPUs, GPUs, DSPs, ASHW, etc.) on which to
map the application components.

In the MegaMart project, the UC has the objective of reducing the development time for complex
systems by exploring several improvements to the design and verification process. The first is the use
of a multi-level verification framework introducing Model-in-the-Loop in addition to the Functional
Verification commented above (SW-in-the-Loop) and the final prototyping (HW-in-the-Loop).

Figure 2 Traditional V-Model for SW Engineering.

Figure 3 Some MegaMart improvements to the traditional V-Model.

In this way, both functional and extra-functional design mistakes can be detected earlier and corrected
with much less effort and time. The second, by automatizing all the processes in the flow in which
information is extracted from the Single-Source Model in order to perform a particular design task such

Page 10 of 71

as executable model generation or final implementation. Both improvements are shown in Figure 3. As
it can be seen, the multi-level validation & verification framework using simulation at different abstraction
levels supports detection of design errors earlier in the design process. Reusability of the tests to be
applied along the verification process is another key improvement. The models at each stage are
automatically generated from the system model, thus accelerating the process. So, mSSYN generates
the different models at different abstraction levels to be validated using several simulation technologies,
when needed. At the end of the process, the final solution is automatically generated using eSSYN
(essyn.com).

1.2 System modeling requirements
Nowadays, we have just started to realize the enormous potential of an interconnected world of billions
of smart devices providing new services to people [Wel16]. The end of Moore’s Law might facilitate the
proliferation of new electronic systems supporting these new services. As commented above, these,
services will be built of many SW components deployed on multiple devices, from small sensing motes,
embedded systems and smartphones to data-centers, and even, High-Performance Computing (HPC)
facilities. Despite its apparent diversity, all of them may be implemented with integrated systems
containing heterogeneous processing elements (i.e. CPUs of different kinds, GPUs, DSPs and HW co-
processors). In all cases, the systems will need to satisfy functional and extra-functional critical
constraints, including safety, security, power efficiency, performance, size, and cost. The global
characteristics of the system as a whole will depend on the characteristics of their independent
components, but also on the interaction with the physical environment and among them through the
different communication networks. Therefore, the main innovation in the time to come shall be to jump
from the design of cyber-physical systems (CPS) to cyber-physical systems of systems (CPSoS). These
complex, heterogeneous, distributed systems require an interdisciplinary approach where the
knowledge about the physical side of the systems is indispensable to arrive at solutions that are taken
up in the real world. To integrate these diverse research and development communities is the most
crucial aspect for a successful future development of CPSoS. Current domain-specific methods are
becoming obsolete; hence new predictive, engineering and programming methods and tools are
required ensuring the satisfaction of the functional and extra-functional constraints imposed to the
system while considering its interaction with the physical world and the humans.

The main reaction to the continuous evolution of computing platforms has been to decouple the
application SW from the underlying HW. To achieve this goal many abstraction layers of middleware,
communication protocols, operating systems, hypervisors and HW abstraction layers are being used.
This approach is powerful enough for general-purpose systems, for which extra-functional constraints
such as execution times, energy efficiency, dependability, etc. are not strict. But the technological
evolution towards CPSoS based on heterogeneous devices composed of CPUs of different kind, GPUs,
DSPs, HW co-processors etc., added to the need to satisfy stricter non-functional properties makes this
goal unrealizable. Therefore, there is a need for a holistic modeling framework, across SW and HW
layers, applications and domains. This modeling framework should be able to capture the complete
high-abstraction model, integrating projects with different constraints (i.e. commercial or critical SW) and
domains (i.e. from High Performance Computing, to embedded SW). The modeling and design
framework should provide him/her with an accurate knowledge of the implications that the final
implementation of the functionality on the concrete (distributed) platforms under a specific functional
mapping will have in terms of extra-functional constraints. Beyond performance, energy consumption,
safety, data traffic, security, adaptability, scalability, complexity management and cost-effectiveness
have to be taken into account. This information about the complete system characteristics can be used
in its design-space exploration and optimization. As commented above, an essential aspect to be taken

Page 11 of 71

into account is the interaction of the system with humans all along the life cycle, since the specification
and design of the system until its deployment, field and obsolescence.

UML has the potential to be the central modeling language in this new context. To achieve this
goal, a consensus on a profile, powerful enough to capture all the relevant concepts required in CPSoS
engineering while, at the same time, simple enough to find wide acceptance by the design community,
is required. MARTE is a good starting point for two main reasons. Firstly, it captures most of the concepts
required in system engineering on heterogeneous platforms under strict design constraints. Secondly,
there is clear convergence among computing platforms and today, it is possible to find the same
computing resources (i.e. CPUs, GPUs, and application-specific HW) in platforms apparently as
different as an embedded system, a smartphone and a supercomputer.

Concrete requirements that the UML/MARTE modeling methodology should satisfy, follow.

1.2.1 Simplicity

Modeling is a time-consuming, error-prone activity. In order to minimize the modeling effort and to
reduce the number of modeling mistakes, the modeling methodology should be simple, easy to
understand and to be applied. The single-source modeling approach [Amb15] followed by S3D is
intended to reduce the modeling effort. It supports capturing all the relevant information in a single model
thus avoiding duplication of design information.

As an additional characteristic towards simplicity and understandability, the number of
fundamental modeling primitives should be as reduced as possible. In our case, the methodology is
Component-Based [LaCo17] and therefore, the fundamental modeling primitives are those shown in
Figure 4

Figure 4 A system with three components.

The fundamental modeling element is the component. Components communicate among them through
ports. The ports contain interfaces, which implement the communication methods. The components
either require communication methods (or services) trough required interfaces or offer communication
methods (or services) through provided interfaces. Just by looking to the system architecture in Figure
4, one can realize that ‘Component 2’ is an active component (stereotyped as an RTUnit) requiring
services provided by other components. ‘Component 1’ on the contrary, is a passive component (which
can be stereotyped as a PPUnit) providing services to other components. ‘Component 3‘ may have its
own internal concurrent activity as it requires services through ‘Port 3.1’ and provides services through
‘Port 3.2’ or it is a PPUnit requiring services from a third component (‘Port 3.1’) in order to implement
the services it provides through ‘Port 3.2’.

Page 12 of 71

As it will be shown latter, this simple modeling mechanism will be able to support different
system engineering methodologies and Models of Computation (MoC).

1.2.2 Scalability

Although simple, the modeling methodology should be able to support the modeling and design of
complex systems. Systems providing the services commented above, implemented by the interaction
of many different functional components deployed on many different computing devices of many kinds.

In order to achieve this goal, several fundamental techniques are supported. The first one,
hierarchy. When a problem is too complex, the main way to address its modeling is dividing it in smaller
sub-components, which can be modeled independently. In relation with hierarchy, another characteristic
to be covered is composability. The components should be able to be composed without restrictions
whenever one provides the services the other requires. In this way, the modeling methodology should
support a ‘bottom-up’ design methodology where sub-components are built up by the composition of
simpler components, which, in the same way, can be the result of the composition of other simpler
components as shown in Figure 5.

Figure 5 Different systems composed from the same components.

One of the main objectives of Megamart is the modeling of very complex systems requiring
MegaModeling methodologies. This goal will be achieved by improving the modeling methodology
proposed in this document with additional features like hierarchical HW modeling and multi-language
support.

1.2.3 Separation of concerns

In the general case, capturing all the relevant information about the system in a single place following a
single-source approach may be in contradiction with the simplicity goal stated above. In order to avoid
this contradiction and to reduce the modeling effort, the system model is divided in ‘views’. Each ‘view’
will capture all the relevant information about a specific design concern (i.e. the data types used, the
functionality, the communication among components, the functional application, the system verification,
etc.).

Page 13 of 71

1.2.4 Design-Space exploration

The methodology should be flexible enough to support the analysis and comparison of many different
architectural solutions for the implementation of a complex system. The system architect should be able
to explore as many different architectural mappings as needed, that is, decisions about which
computational resource should execute each functional component, with minimal effort. The concrete
analysis model of a particular architectural mapping should be generated automatically [PRV11].

1.2.5 Reusability

One of the main ways to improve design productivity is to keep to a minimum the need to develop new
components from scratch but using them repeatedly from one project to the other. The achievement of
this goal requires the components completely platform independent. This provides important
advantages in terms of reusability in two main aspects. The first one is the improvement in reusability
of the components from project to project, that is, when there is a need to up-date the service. As each
component encapsulates its functionality in a platform independent way, only those components whose
functionality needs to be up-dated have to be considered as the services provided or required by the
other components will not be affected even in case the up-date of the system requires a complete
architectural re-mapping. This is particularly interesting in DevCons methodologies where the analysis
of the behavior of the system in runtime allows the improvement of new versions of the same system or
even, new generations of the product.

The second advantage comes from the reusability of the components when the execution
platform is improved (i.e. new versions of the same family of platforms) or changed both in terms of the
HW-dependent SW (i.e. a change in the OS or the middleware) or the HW. Apart from the reusability
facilitated by the platform-independence of the components, there are other two aspects of S3D
improving reusability. The first is the use of what we call ‘Generic Components’. These components are
defined only by the services they provide and/or require. They lack ports, as they will be added when
the Generic component is instantiated as an ‘Application Component’ inside a concrete system, with the
sole exception that a component requires the same interface from N providers, where it is needed that
these N ports are specified in the component. The second is the use of interface inheritance. This allows
the connection of components even if they provide/require different services whenever one interface
inherits from the other.

Improving the reusability of a component requires an extra effort in encapsulating the
component in a convenient way and integrating it in a library with related components. This effort is
worth to be spent whenever the component is going to be optimized in new versions of the application
or reused in a new application [KRB13].

Only once mapped to a concrete computing resource, the corresponding platform specific code
including the required middleware, input-output access code and system calls should be generated. Our
goal is to make this generation process completely automatic by SW synthesis.

2 System Modeling

In this section, the S3D modeling methodology will be detailed. First, the fundamental concepts
supporting the methodology are described. Then, the views used in order to model the different aspects
of the system ensuring a strong separation of concerns, are presented.

Page 14 of 71

2.1 Fundamental elements
The system views are divided in two large groups, the Design & Verification (D&V) views and the Tool-
Specific views. The former provides all the relevant information about the system in order to support its
design, simulation, verification, performance analysis and synthesis. The latter include additional
information required by specific tools supporting concrete design tasks. In this document, only the D&V
views will be described.

The D&V views are divided in three groups, the Platform-Independent Model (PIM), the Platform
Description Model (PDM) and the Platform-Specific Model (PSM).

2.1.1 Platform-Independent Model

In this section, the fundamental elements of the PIM will be described. The PIM captures all the
information required to describe the platform-independent functionality of the system. Following the
basics of Model-Driven Architecture (MDA), the PIM “exhibits a sufficient degree of independence so as
to enable its mapping to one or more platforms” [Tru06]. As the code is developed ‘for’ a particular
platform, making use of platform-dependent code (system calls, drivers, etc.), the functionality of the
objects in the model has to be expressed using abstract formats such as state-machines or sequence
diagrams. From them it is possible to automatically generate the equivalent functional code.
Nevertheless, experience shows that these means are useful only for small pieces of code but they fail
when dealing with complex functions. Therefore, in S3D, as soon as the component is fully specified its
functionality is developed by using the preferred programming language (i.e. C++, Java, etc.). Several
codes can be associated to each component. In order to be Platform-Independent, the code should not
include any system call or Hardware-dependent Software (HdS).

Generic components
As commented above, the system is conceived as a network of components. In order to maximize
reusability and flexibility, components are generic components. In MARTE, these elements are
Structured Components. In their most abstract form, the only external information about such elements
is the services (functions) they provide and/or require, as shown in Figure 6. Thus, the required interface
of a structured component lists all the services that the component requires from other components or
the environment. The provided interface lists all the services that the component offers to other
components or the environment. The fact that the structured components do not specify which, and in
what way the required/provided services are grouped in interfaces and exposed externally, maximizes
the reusability of these components.

Figure 6 A Structured Component.

Each structured component will be linked to the file where its structured data and behavior is specified
in the action language used, in our case, C++. In principal, no restrictions are imposed to the way the

Page 15 of 71

behavior is specified. Nevertheless, as it will be described in more detail afterwards, component-based
design methodologies impose restrictions on how the components interact among them, that is, only
through well-defined interfaces [LaDi17]. Going further, actor-oriented design methodologies impose
additional restrictions on the internal functionality of the component.

These Generic Components will be grouped and provided to the system engineer in libraries
avoiding the need to develop them from scratch or from the adaptation of legacy code from previous
projects.

Application components
From the generic components, application components with concrete ports and interfaces will be derived
by inheritance, as shown in Figure 7. These application components can be instantiated as <<RtUnit>>
or <<PpUnit>> weather they are an active, concurrent object or a passive one. The system will be
obtained as a composition of such application components connected each other through concrete,
compatible ports and interfaces. The behavior of the application component is the same as the generic
component from which it inherits. As it will be explained later, in Section 0, the interaction among
components can be specified in a flexible way by concrete properties. Depending on the properties
assigned to the ports and interfaces in both sides, different MoCs can be supported. Functional and
extra-functional constraints may be imposed to the application components using appropriate constraint-
specification languages such as OCL.

Figure 7 SENS_C1 as a generic and as an inherited, application component.

Page 16 of 71

As it will be seen afterwards, the ‘RtUnit’ may trigger as many concurrent threads as required. Some of
them will be related with the concurrency required by the implementation of the interface functions under
the MoC defined. Nevertheless, in an ‘RtUnit’, there is only one ‘main’ function. This means that, in
principal, apart from the interface concurrency, there is only one active thread per component. If
additional threads are required, they could be created as forks from the main thread. In order to ensure
that the code is platform-independent, concurrent languages able to be compiled to different platforms
should be used, such as C11, Java, ADA, OpenMP, OpenCL, Qt, etc.

Subsystems
Application components can be grouped together in subsystems. A subsystem is just a component. It
includes other components inside and, therefore, a subsystem is a hierarchical component. In order to
identify a component as a subsystem, the <<Subsystem>> stereotype is used. A subsystem can be part
of more complex subsystems. In this way, subsystems are essential to deal with the modeling of
complex systems of systems.

Figure 8 The structural subsystem, locGroup.

Page 17 of 71

If the subsystem does not have any internal functionality and is just a structural architecture of internal
components, the subsystem is said to be a ‘structural subsystem’. This is the case of the ‘locGroup’ in
the Thales FMS composed directly from the interconnection of components ‘loc_c1’, ‘loc_c2’, ‘loc_c3’
and ‘loc_c4’, as shown in Figure 8. The global functionality of a structural subsystem comes directly
from the composition of the functionalities of their internal components. Otherwise, if the subsystem,
apart from the functionality of its internal components has its own internal functionality and resources, it
is said to be a ‘functional subsystem’. The functionality will be associated to the subsystem in the same
way as with any other component, by a linked file where its structured data and behavior is specified in
the action language used.

As the interaction between an internal component in a subsystem and the internal functionality of the
subsystem, if any, and the rest of components in the subsystem, if any, has to be clearly defined, only
application components can be used. Nevertheless, independently of its internal architecture and
functionality, a subsystem can be defined as a generic component without concrete ports; just exhibiting
the public required and provided services. In this way, again, the flexibility and thus, the reusability of
the subsystem is maximized.

Verification
As it was shown in Figure 3, verification is performed all along the design process. Each time the
functional end extra-functional constraints for the whole system, its application subsystems and each of
the components are defined, black-box verification suites at the different granularity levels can be set-
up. When the code is ready, concrete test sequences ensuring the correct behavior of the system and
its components can be developed.

2.1.2 Platform Description Model

In this section, the fundamental elements of the PDM will be described. The PDM captures all the
information required to describe the HW/SW platform of computing resources used to execute the
system functionality described in the PIM.

Network nodes
In order to deal with the modeling of very complex systems of systems (SoS), partition and hierarchy
are essential mechanisms to be exploited. The SoS should be partitioned in parts (i.e. complete systems
by themselves) which should be partitioned again hierarchically until the detailed computing platform
can be described by its computing architecture of HW devices. These hierarchical parts are nodes
connected each other through a network infrastructure.

Network nodes plays in the platform description the same role as the subsystems in the platform
independent model. Figure 9 shows the FMS architecture composed of two nodes, the HW in the
airplane and the remote data-base in the cloud connected through an airplane-server data-link.

Memory spaces
Depending on the characteristics of the computing platform, the application mapped on it may be
implemented in only one process (an executable) or several. Each executable process will share the
computing resources with the other processes but in its own memory space. Without this information, it
is not possible to generate the application code. This is the reason why the functional components in a
node are mapped to memory spaces. Only when the complete system is simple enough this
intermediate layer can be removed. Figure 11 shows the implementation of the FMS in two executables,
‘CriticalSW’ and ‘FlightPlan’. The airports Data-base is to be implemented in a third executable.

Page 18 of 71

Figure 9 FMS Network architecture.

Figure 10 Mapping of Functional components to executables.

Figure 11 Architectural mapping of FMD components.

Page 19 of 71

Software platform
An essential element in any computing platform is the Operating System (OS), eventually, several of
them when the computing platform is complex and heterogeneous enough. In some cases, when a
system or a subsystem has real-time constraints, a Real-Time Operating System (RTOS) is required. In
Figure 11, the FMS is to be implemented grouping the real-time tasks in an executable on the RTEMS
RTOS and the rest of tasks in an executable running on Linux.

Apart from the OS, there is another Hardware-dependent Software (HdS) that has to be taken into
account. Peripherals and, eventually, co-processors may require specific SW to implement the high-
level interface services used in the PIM. In the general case, these HdS has two layers. The first one is
the device driver. In general, this piece of code is an integral part of the device. As it will be commented
later, any HW device should be associated to its IP-XACT model. The IP-XACT model should include
the code of the device driver. In order to ensure that the PIM model is really platform-independent, the
application code should not call directly the driver functions of any device. Therefore, a second layer is
usually required implementing the PIM interface functions making use of the concrete functions of the
device driver. This code will be represented in the software platform as a <<deviceBroker>> realizing a
certain connection. The driver of the device should be installed in the OS. In Figure 11, the HdS for the
interface ‘I_HWSensor’ is provided. The ‘deviceBroker’ provides the implementation of the function
‘getSensorInfo(D_HWSensor *info)’ using the RTEMS ‘driver’ for the AirPlaneSensors device.

Hardware resources
MARTE supports the modeling of HW providing a functional classification of hardware entities such as
processors, memories, busses, peripherals, etc.1 They are grouped in the HW modeling package. In
S3D the HW logical stereotypes <<HW_PLD>> and <<HW_ASIC>> have a physical semantics and
should not be used in the HW resources view. In Figure 12, the computing architecture of the airplane
HW is shown. There, a dual ARM Cortex R8 has been used to implement all the real-time functions and
a Cortex A35 for the non-critical functions.

Figure 12 HW architecture for the “Airplane_HW” Node.

Silicon implementation
The MARTE ‘HW_Physical’ model represents hardware resources as physical components with details
on their shape, size, position within platform, power consumption, heat dissipation, and many other
physical properties. In S3D, ‘HW_Logical’ entities, apart from ‘HW_PLD’ and ‘HW_ASIC’ can be mapped
to physical entities indicating a design intention or decision. As an example, in Figure 13, the ARM R8
and associated devices are to be implemented in a FPGA, the main memory will make use of a

1 Computing resources would correspond to the ‘devices’ in programming languages such as OpenCL.

Page 20 of 71

commercial chip (stereotyped as <<Hw_Component>>) and the non-critical resources will be
implemented in an ASIC. Based on this information, S3D will generate automatically all the information
needed to feed the corresponding design flows.

Figure 13 HW implementation.

2.1.3 Platform-Specific Model

The Platform-Specific Model (PSM) captures al the implementation decisions taken during the design
process.

Architectural mapping
Design decisions are expressed in UML with the ‘abstraction’ and ‘allocate’ relation between objects. A
is allocated in B means that object A is to be implemented by object B. In Figure 11 it is possible to see
the design decisions taken for the architectural mapping of the FMS application components.

2.2 D&V Views
As commented above, the complete model is organized in views. Each of these views captures a
specific aspect of the system to be designed. The views are modeled as UML packages specified by
the corresponding stereotype. The stereotypes, classified by the modeling type, are the following:

PIM views

<<ApplicationView>>

<<VerificationView>>

PDM views

<<MemorySpaceView>>

<<SwPlatformView>>

<<HwResourceView>>

Page 21 of 71

PSM view

<<ArchitecturalView>>

Figure 14 shows how the model is organized in Eclipse EMF Neon. As it can be seen, the model is
composed of packages for each of the views commented above. The ‘Thales_UC_v2’ model of the
‘Thales_FMS’ project makes use of the legacy components in the ‘Thales FMS components’ library.

2.3 Components Library
Facilitating reusability is one of the main concerns of the S3D modeling methodology. Reusability
requires encapsulating the component in a way that facilitates its reuse. This is the goal of generic
components. The second step would be its integration in a reusable component library.

A component is modeled as a package. The package will contain all the relevant information
about the component. The first element in the package is the component itself, stereotyped as a ‘RtUnit’
or a ‘PpUnit’. In addition, the minimum information to be provided is represented by the interface
functions of the component and the data types used by them. In order to support simulation,
performance analysis and synthesis, the files with the code in an appropriate action language are
required. Component verification would require a specific package with the test cases in an appropriate
language.

Figure 14 Model views and Component Library.

Figure 15 shows the model of component ‘SENS_C1’ to be used in the ‘Thales_FMS’ system. As it can
be seen the component ‘SENS_C1’ is a ‘RtUnit’ with ‘run_sens_c1’ as main function. The ‘DataTypes’

Page 22 of 71

package includes the data types used by the interface functions. They are included in the ‘Interfaces’
package.

The files capturing the functionality of the component in C/C++ and Java are described in the
‘FileFolders’ package. The ‘TestData’ package includes the test files to verify the component in a
GoogleTest framework. A ‘Class Diagram’ named ‘Functionality’ is used in order to associate instances
of all these files describing the functionality of the component and its verification tests to a
‘generalization’ of the component.

2.3.1 Active Components

Active application components are modelled as UML components with the MARTE stereotype
<<RtUnit>> (Figure 16). An RtUnit component has its own execution thread, its associated files
with its functionality in an Action Language (i.e. C/C++), and will provide/require services to/from other
application components by means of provided and required interfaces. These provided/required
interfaces and code files are defined in the FunctionalView.

Figure 15 SENS_C1 component.

Figure 16 Active application components.

Page 23 of 71

Active Component Attributes
The following attributes of the <<RtUnit>> stereotype are supported:

• The attribute isDynamic. A value isDynamic=true specifies that the application component
dynamically creates threads in order to attend the requests to the services provided by the
RtUnit,

• The attribute srPoolSize specifies that the RtUnit has a finite set of threads to attend requests
to the provided services,

• The attribute srPoolPolicy should be infiniteWait to denote that, in the event that there is
a service request and the RtUnit cannot create a thread to attend the service (because the
srPoolSize limit has been reached), the RtUnit waits until one of its server threads is released
(after completing a service request),

• The isMain attribute is used to specify that the RtUnit has a main thread to be activated when
the application executable is launched.

The main function of an active Component
In order to define the main function of the component, the “main” attribute of the <<RtUnit>> stereotype
is used. The attribute is assigned to a UML operation captured in the functional view, as shown in
Figure 17:

Figure 17 Main function of an application component.

So, the mainCompo component will generate a static thread executing main_func. S3D recommends
avoiding generating dynamic threads from the main function. Nevertheless, if this is needed, it can be
done using a concurrent language (i.e. C11, Java, ADA, OpenCL, Qt, etc.).

The main function of a component may have input parameters. In order to annotate these
values, a UML constraint is used. The constraint has to be owned by each instance of a component. In
the constraint, the name of the functions and the values of their parameters is captured by means of the
following syntax: “$initValue=nameFunction(value1,value2,value3)”.

2.3.2 Passive Components

Protected passive units (PpUnit) are used to model shared information required by active components.
a) shows a PpUnit component providing services through three ports. b) shows a PpUnit requiring
services. Nevertheless, this happen only as a consequence of the execution of the provided services,
not as a consequence of any internal

PpUnits may specify their concurrency policy either globally or for all of their provided services
through the concPolicy property. The services provided by the PpUnit are enclosed in interfaces and

Page 24 of 71

offered through provided ClientServerPorts. All the interfaces provided by a PpUnit component inherent
the value of the attribute concPolicy.

As in the case of the RtUnit components, Generic PpUnit Components may have associated
files, files folder and libraries in order to describe its functionality.

2.3.3 Subsystems

Subsystems are modeled in a similar as leaf components. These components have an
internal structure, composed of interconnected application components. The subsystem does
not impose the number of ports. They will be decided afterwards, once the subsystem is
instantiated in any system application. As it is shown in Figure 18, the ‘LocGroup’ subsystem
follows the same organization than a single, “leaf” component.

The main difference is that the subsystem includes as packages the models of all the components the
subsystem uses. Another difference is that the subsystem is stereotyped as a <<Subsystem>>. The
figure includes the composite diagram showing the internal architecture of the subsystem. As it is by
itself a generic component in the system, it has no ports. This shows how the methodology supports
hierarchical partitioning, an essential feature to enable mega-modeling.

Figure 18 LocGroup subsystem.

2.3.4 Data Types

The UML elements that can be used to define the data types of the system are UML Enumerations
(enumerated types), UML Primitive Types (basic data types such as “unsigned char”, “int”, “long”,
etc.) and UML Data Types that are used to define new data types.

Enumeration Data types
Enumerations are captured as UML Enumeration data types and the different values of the
enumeration are modelled as Enumeration Literals as shown in Figure 19

Page 25 of 71

Figure 19 Enumeration data types.

Primitive Data types
UML PrimitiveTypes are used to define basic data types, as shown in Figure 20

Figure 20 Primitive types.

Derived Data types
The UML DataTypes are used to define new kinds of data. UML Data types are used for modelling
non-primitive data types (derived data types). They are structured data and arrays.

Structure Data types
Structured Data are modelled by using the MARTE stereotype <<TupleType>>. The Datatype has
a set of properties typed by t h e specific data type or primitive type that represent the fields of
the structured data type. When a field of the structure data types is a pointer, an asterisk is annotated
in the name as in the “newp_support” data type of Figure 21

Figure 21 Structure Datatype.

Array Data types
Arrays are modelled by using the MARTE stereotype <<CollectionType>>. The collectionType
stereotype is applied to a DataType model element. A property has to be added to this DataType.
The property should be typed by PrimitiveType or another DataType. Then, in the attribute

Page 26 of 71

collectionAttrib of the stereotype CollectionType that property should be attached, as property
“array128i” in Figure 22.

If the array is unidimensional, its dimension is annotated in the multiplicity tag. If the array is
multidimensional, the attribute should be specified by the MARTE stereotype <<Shape>>.The definition
of the dimensions is {dim1, dim2, dim3} (Figure 22 and Figure 23). In these cases, the definition of the
size (in Bytes) of the array should be annotated as (X,Bytes)x(Y,Bytes)x(Z,Bytes) or by the notation
(X*Y*Z, Bytes) (Figure 22).

In some cases, the designer prefers not to specify the dimensions of the array. Figure 24
shows two cases of how to define an array with no specific value of its dimensions. In the case of a
unidimensional array, the size is defined in the tag multiplicity as [0…*] of the corresponding property
of the Datatype. In the case of multi-dimensional arrays (by applying the stereotype Shape), the
corresponding dimension should be specified by “*”. Figure 24 shows examples of these undefined
annotations.

Figure 22 Array modelling.

Figure 23 Array dimension specification by the Shape stereotype.

Figure 24 Arrays with undefined dimensions.

Page 27 of 71

Completely specified data types
The methodology includes a stereotype for completely specifying the data types. The attributes
associated with this stereotype are shown in Table 1:.

<<DataSpecification>>
size: NFP_Data [1]

pointer: Boolean [1]
dataSpecifier: DataSpecifier [1]
dataQualifier: DataQualifier [1]

 complexDataType: String [0..1]
Table 1: <<DataSpecification>> stereotype attributes.

The attributes are:

size: defines the size of the data in its memory representation. The attribute size is NFP_Data, a
MARTE data type that specifies the size of a data. The notation of this MARTE type consists of two
values, the value and the unit. It can be annotated in two different ways:

• size: NFP_DataSize[1] = (value=8, unit=Byte), where the value is a real number and the unit
might be bit, Byte, KB, MB or GB.

• size: NFP_DataSize[1] = (16,Byte).

pointer: specifies whether the data is a pointer

dataSpecifier: denotes the data type. In order to ensure language-independency, this attribute is
defined by a string. So, the list of values in the case of the C/C++ language is the following:

<<String>>
DataSpecifier

None
char

signed char
unsigned char

short
short int

signed short
signed short int
unsigned short

unsigned short int

Int
signed int
unsigned

unsigned int
long

long int
signed long

signed long int
unsigned long

unsigned long int

long
long long int

signed long long
signed long long int
unsigned long long

unsigned long long int
float

double
long double

void

Table 2: Data Specifier Values.

dataQualifier: denotes the data qualifier. In the case of C/C++, the list of values of the DataQualifier
attribute is the following:

Page 28 of 71

<<String>>
DataQualifier

 none

const
volatile
register

 Table 3: Data qualifier values.

complexDataType: can only be used when the possible values of the dataSpecifier and dataQualifier
cannot specify the data type. For instance, “complexDataType = const volatile unsigned long int”.

2.3.5 Generalization of Data Types

The modeling methodology enables the definition of data types. This is modeled using the UML
inheritance. If the parent element of the UML inheritance is a Primitive Type (in Figure 25, the data
“ULONG” and “USHORT”), the specific data is specified by the values of the corresponding primitive
type captured in the attributes of the stereotype DataSpecification (the attributes dataSpecifier or the
complexDataType). If the parent element of the UML inheritance is a Data Type (in Figure 25, the data
“Byte”) the specific data is specified by the DataType (in Figure 25, the “QoS” is specified as “BYTE”).

Figure 25 Data Generalizations.

In some design optimization tasks, it is required to divide a data type containing many data in a new,
related data types, with a subset of the data. In these cases, data type inheritance can be a solution.
Some modelling constraints are applied to these data type inheritances:

• Both data are of an UML Data Type,

• The stereotype DataSpecification should apply to both data types,

• The attribute complexDataType of the DataSpecification stereotype of the derived data type
(in Figure 26, the Data Type array_memc_tctu_exploration) should be specified by the name
of the parent data type (in Figure 26, the Data Type array_memc_tctu),

• In the attribute size of the DataSpecification stereotype, the new and different value of the
size (in Bytes) of data should be specified:

Page 29 of 71

Figure 26 Data Type generalization.

In this way, a service using array_memc_tctu can be provided by executing two times the same service
using array_memc_tctu_exploration.

2.3.6 Files

The files that store the implementation source-code of the applications are modeled as UML artifacts.
These artifacts are specified by the UML standard stereotype <<File>>. The Artifacts are specified
by a name (annotated in the attribute “name”) and in the attribute “File name”, where the name and
the extension of the file should be included, as shown in Figure 27:

Figure 27 Files.

File specification
Each File can be specified in more detailed with additional information. This additional information is
captured in the stereotype <<ApplicationFile>>. The ApplicationFile stereotype has the following
attributes:

parallelized: Boolean. The file contains code in a concurrent language (i.e. C11, OpenMP, OpenCL,
Qt, etc.) leading to several threads when executed,

highLevel: Boolean. The file corresponds to a high-level language which cannot not be compiled directly
(i.e. Heptagon from which C can be obtained),

Page 30 of 71

implementation: String. The file is optimized to be executed in a specific HW resource: DSP, NEON,
GPU, etc. The name annotated should be the same as the HwISA of the HW processor specified in the
HwResourceView used for the allocation.

notModifiable: Boolean. The file is protected and cannot be modified.

environment: Boolean. The file corresponds to a test bench of the system.

<<ApplicationFile >>

parallelized: Boolean [1]

highLevel: Boolean [1]

implementation: String [0..1]

notModifiable: Boolean [1]

environment: Boolean [1]

Figure 28 ApplicationFile stereotype attributes.

Association of Files, File Folders and Libraries to Generic Components
The association of files, file folders and libraries to Generic Components is specified using a UML Class
diagram. The association is made using the UML connector <<use>> between instantiations of the files
in the file folder and a generalization of the component, as shown in Figure 26.

Figure 29 Association of files to Generic Components.

2.3.7 Interfaces

Interfaces integrate the services provided/required by a component and define its characteristics. Each
interface function is stereotyped as a Real-Time service (‘RtService’). Its properties are defined by the
attributes described in Section 3.3.1. All the functions included in the same interface share the same
properties. The same function can be included in different interfaces with different properties.

Interfaces are modelled by means of UML interfaces. UML interfaces are stereotyped by
MARTE <<ClientServerSpecification>>. A ClientServerSpecification provides a way to define a
specialized interface that is to be defined in terms of its provided (or required) operations.

Generic Interfaces

In principal, a Generic Component has as many interfaces as provided/required services. Only
when a set of services are going to be handle together always, they are grouped in the same Generic
Interface. In order to maximize reusability, these Generic Interfaces should not be annotated with
properties limiting its architectural applicability. When a generic component is used in a concrete

Page 31 of 71

architecture, its ports should be associated with the corresponding application interfaces including all
the functions required or provided by the port. Application Interfaces will integrate services of several
Generic Interfaces as required by the connectivity of the application component in its use in the
application architecture.

Application Interfaces

When a component is instantiated in a system (or subsystem) architecture, the ports through
which the component communicates with the other components in the system (or subsystem) and with
the environment are decided. All the services required (or required) by the port should be grouped in a
single interface. This interface is defined by inheriting all the interfaces whose services have to be
grouped, as shown in Figure 30:

Figure 30 Application Interface based on two Generic Interfaces.

Interface Services
Interface functions are stereotyped as Real-Time services (RtService). Their properties are defined by
several attributes. Due to its importance in order to define the MoC of the component and its
environment, they are described afterwards, in Section 3.3.1.

Service Arguments
In the general case, Interface Functions have arguments. These arguments are modelled as UML
parameters. These parameters ca be typed by the Data types defined in the Data Model. The UML
parameters can be in, inout and return. The order of the arguments in a function prototype has
to be specified. For that purpose, the name of the UML arguments that model the function arguments
should be defined as order:nameArgument where the value order defines the order of the argument
in the function prototype.

Pointer
The function arguments can be modelled as pointers by applying the stereotype <<Pointer>>.

Reference
The function arguments can be modelled as references by applying the stereotype <<Reference>>.

Arguments Qualifier
The function arguments can be specified by a qualifier by applying the stereotype
<<ParameterQualifier>>. Values associated with the ParameterQualifier stereotype are “const”,
“volatile” and “register”.

Page 32 of 71

Interface compatibility
The methodology supports interface compatibility. Interface compatibility enables the connection of
components with different interfaces whenever the service required by one component can be realized
by the service provided by another component. Thus expanding reusability. Moreover, interface
compatibility allows exploring different design alternatives based on different concurrency levels.

In order to be compatible, two interfaces have to share at least one compatible function. These
compatible functions are the functions to be provided by one component and required by the other.
Compatibility between interfaces and interface functions can be expressed using UML inheritance in the
same way as with data generalization (see $2.3.5). The parent function is provided while the inherited
functions are required by one or several components.

Two functions with different names and parameters are compatible whenever:

1. the set of parameters of the derived function is a subset of the parameters of the parent
function,

2. the types of the parameters in the subset are the same or a generalization of the parameters
in the parent function and with the same direction,

3. all the parameters of the parent function are associated once and only once to the
parameters of the parameter sets of all the inherited functions. Parameters in the parent and
the inherited functions should be associated unambiguously either by name or type. Of
course, the direction must be the same,

4. an inout parameter in the parent function may be associated to two parameters in one or two
inherited functions provided that such association is unambiguous,

5. independently from/to which inherited function a parameter is got and eventually, changed,
the functionality performed is that of the parent function.

In Figure 31, the service getDBRunway can be provided whenever the services getAirport and
getRunway are required and the two-input data needed (airport and runway), got from them. The result
will be provided when the service getRunway() is required. Parameter airport is associated by name
while parameter runway is associated by type.

Figure 31 Interfaces inheritance.

Page 33 of 71

Interface compatibility is very useful in breaking the sequentiality imposed by services with input and
output data. In general, it is difficult to avoid stopping the execution of the thread requiring the service
until it is executed in the provided component and the results (inout and return parameters), produced.
This limitation is particularly important in signal processing systems. With interface compatibility, the
times in providing and delivering data are different which means that the service can be called as
frequent as needed, independently of its execution time (whenever the throughput is kept).

2.3.8 Libraries

In order to compile an application, it is necessary to include all the libraries used when developing the
code. Therefore, in order to enable the generation of the makefiles, these libraries should be
modeled. Libraries are modeled as UML Artifacts specified by the UML standard stereotype
<<library>> as shown in Figure 32:

Figure 32 Libraries

2.3.9 Auxiliary Files

As was described previously, each application component has the files that implement each specific
application functionality associated. However, these files can require functions that are implemented in
other files and which act as auxiliary files that provide services for the application functionalities. These
auxiliary files are modeled as UML packages in order to represent the folder where these files are
allocated. These files are specified by the stereotype <<FilesFolder>>.

The FilesFolder stereotype has the following attributes:

• parallelized: the file folder contains files containing concurrent code,

• highLevel: the file folder contains files that specify high-level functionality,

• implementation: the file folder contains files which are optimized to be executed in a specific
HW resource (i.e. DSP, NEON, GPU, etc.),

• notModifiable : the file folder contains files which cannot be modified for any reason,

• environment: the file folder contains a test bench.

Figure 33 Auxiliary FilesFolder packages.

Page 34 of 71

2.4 Application View
This view allows capturing the generic components selected/developed to implement a system, the
application architecture where these components have been instantiated as application components
and the way they have been connected each other. A hierarchical approach is used to capture the
application model. So, the complete application is captured as a component, the system, which in turn
can be hierarchically partitioned in simpler subsystems and components. Three types of components
are supported, active, passive and composite components. An application component communicates
with other components through client-server ports. These ports have associated required/provided
interfaces. Provided interfaces declare the functionalities implemented by the component and offered to
other components. Required interfaces declare the functionalities invoked by the component but
implemented by others. The application view serves to declare and define these components and to
interconnect them, eventually generating the “top” application component, called the system in the
application view context. The system component (and by extension, a composite component) is
described through the instantiation and interconnection of declared generic components. All these
instances and interconnections configure the application architecture. Application components are
interconnected each other through port-to-port connectors.

The functionality of the application is derived from the source code in the files associated to the
generic components from which the application components have been instantiated. Additional
functionality will be derived from the properties assigned to the interfaces and ports defining the way the
component interacts with other components and/or the environment. In any case, the application model
shall be platform-independent.

2.4.1 Components

In general, components in the Application View are generalizations of generic components and sub-
systems in the reusable libraries used in the development of the system. These generalizations will be
used in composing the system architecture. Components and sub-systems are connected each other
through ports.

2.4.2 Ports

Communication among application components is established through UML ports. The ports link to the
interfaces containing the services that the application components require and/or provide. These ports
and interfaces may be assigned with properties. These properties would define the model of
computation and communication among components.

The ports of the components should be specified by the MARTE stereotype
<<ClientServerPort>>. In the attribute kind of the ClientServerPort stereotype, the port is specified
considering whether the port provides or requires an interface. The interface required or provided by the
port is defined in the attributes provInterface and reqInterface.

In order to specify the interaction properties of the interface, the S3D stereotype
<<ClientServerQueuePort>> should be used. This way, system modeling under different MoCs is
supported as addressed in section 0.

2.4.3 Connectors

Ports are connected am ong them using UML connectors.

In Digital Signal Processing applications, the flow of data among components is very relevant
in order to understand the behavior of the system. In order to highlight the direction of data movements,

Page 35 of 71

when all the parameters in all the functions in an interface have the same direction, instead of a
connector, the two ports may be linked with an InformationFlow edge making data direction explicit.

2.4.4 Application Architecture

The top application component is captures as a UML component decorated with the <<System>>
stereotype. Within the application view context, this is called the System component. Only one
System component should be defined within the ApplicationView package.

The System component is built up with instances of the application components interconnected
through connectors. The application architecture is captured in a UML Composite Structure diagram
associated with the System component.

2.4.5 System ports: I/O communication

The System component communicates with the external environment. This environment communication
is established through ports. These UML ports should be specified by the MARTE stereotype
<<ClientServerPort>> (Figure 34), specifying the correct values of the attribute kind, provInterface and
reqInterface. These System ports are connected to application instances. This connection is port-to-
port.

Figure 34 Application Structure.

2.4.6 Periodic Application Instances

The main function of an application component may be characterized by a period, triggering its execution
periodically. The period of an application component is modelled by a UML comment specified by the
MARTE stereotype <<RtSpecification>>. In the attribute occKind the period is annotated as:

• periodic (period= (value, unitTime))

Then, the RtSpecification comment is associated to the RtUnit instance component by using a UML
link (Figure 35):

Page 36 of 71

Figure 35 Periodic application instance.

2.4.7 System Files

The System component may have associated files. These files are identified by the UML standard
stereotype <<File>> and by the stereotype <<SystemFile>>. These files are associated with the System
component through a UML abstraction specified by UML Use relations, as shown in Figure 36:

Figure 36 System component with associated files.

Libraries
The compilation of the application may require a set of specific libraries in order to enable the generation
of the required makefiles. The Libraries defined are associated with the System component by means
of UML Use relations, as Figure 37 shows:

Figure 37 System component with associated libraries.

Files Folders
The FilesFolders packages are associated with the System component by UML Use relations. The
designer is free to include the corresponding UML artifact files in these packages in order to model the
real auxiliary files explicitly.

Page 37 of 71

Figure 38 System component with FilesFolder packages.

Modeling Variables
In S3D, modelling variables are used to define characteristics required to fully model the application
components of the system in relation to certain deign tasks such as compilation and code generation.
The modelling variables are:

• language: specifies the language in which the specific application functionality is implemented.
Not mandatory (by default, it is “C”).

• path: specifies the path where the functional files are allocated in the host. Mandatory for the
System component.

• path_system: specifies a path of a File or FilesFolder of an application component that has as
first part of the absolute path, the path associate to the System component.

Modeling Variable Specification
Modeling variables are annotated as $nameVariable=”valueVariable”; as shown in Figure 39:

Figure 39 Specification of Modeling Variables.

The model variables are annotated with UML Constraints owned by the component (RtUnit, System,
etc.) denoted in the ownedRule of the component and in the “Context” attribute of the constraint (Figure
40).

Figure 40 UML constraint for application component variables.

Page 38 of 71

The “Specification” attribute of constraint contains the declaration of the variables. The variable
annotation is captured in a LiteralString (Figure 41). Then, the constraint is associated with an element
model that is included in the ConstrainedElement attribute of the UML constraint (Figure 40). The
ConstrainedElement attribute denotes the model element which the variables annotated in the constraint
are applied. This association is captured by using and UML link between the constraint and the model
element. It is necessary to distinguish which element is the owner of the constraint and the element to
be specified by the variables of the constraint. So, in Figure 41, there are four constraints
(“MAC_LMAC_states_facets”, “MAC_LMAC_varibles”, “MAC_InterfacesFolder_LMAC_common” and
“MAC_Folder_LMAC”). All these UML constraints are owned by the application component “lmac”
(Figure 43). However, not all of these constraints are applied to the same model element, denoted by
the attribute “ConstrainedElement” of the constraints (Figure 44).

Figure 41 Annotation in a UML constraint for variable specification.

Figure 42 Multiple constraints in the same application component.

Figure 43 Constrains to the “lmac” application component.

Page 39 of 71

Figure 44 Constraints with different constrained elements.

2.4.8 Concatenation of paths

The creation of the makefiles from the information captured in the model requires the paths of the
different model elements to be exact. The criteria for composing these paths is a concatenation of
different paths. The base path is the $path annotated in the System component. This path is used
to create the complete paths of the different files, file folders, etc. of the application (Figure 45):

Figure 45 Specification of the System’s base path.

Then, each application component has its own relative path. In Figure 46, the application component
“lmac” has the associated constraint “MAC_LMAC_variables”. This constraint specifies the $language,
$creation and $path. In relation to the $path, the base path for the files and files-folder associated with
this component is “home/leonidas/yaw/files/components/mac/” that is, the concatenation of the System’s
base path and the application component path.

To complete the path of the files “ComponentCoreH” and “ComponentCoreCpp” in Figure 46,
to the previous path (“home/leonidas/yaw/files/components/mac/”), the path associated with the Files is
concatenated as well: “home/leonidas/yaw/files/components/mac/lmac/”. Finally, the name of the
attribute “File name” of the File model element (see section 3.1) is concatenated. Thus, the path of the
File is “home/leonidas/yaw/files/components/mac/lmac/ComponentCore.h”.

In the case of the FilesFolder “lmac”, it does not have any constraint associated. In this case,
the path is the System path (Figure 45) plus the application component path (Figure 46) and the name
of the FileFolder (or File): “home/leonidas/yaw/files/components/mac/lmac/”.

A different case is the specification of the path for the path “mac”. This path has an associated
constraint where a $path_system variable is annotated. In this, the creation of the path does not consider
the base path of the application component (in Figure 46, “yaw/components/files/”). In this case, the

Page 40 of 71

System path (Figure 46) is concatenated with the value of the $path_system variable and the name of
the FilesFolder:

“home/leonidas/yaw/files/yaw/interfaces/mac/” and

“home/leonidas/yaw/files/yaw/common/mac/”.

Figure 46 Application components with different types of model variables.

When two or more constraints are associated with a File or FileFolder, this means that there are two or
more Files or FilesFolders with the same name but in different locations (in Figure 46, “mac”
FilesFolder).

2.5 PDM Views
The PDM views describe the platform on which the system application is going to be mapped. It starts
with the memory partitions, that is, the executables in which the components are grouped, the OSs
running these executables, the HW resources executing the code and even, the physical devices on
which these HW resources have been and/or are to be implemented.

2.5.1 Memory Space View

The memory space view contains the components that identify the memory spaces, which
represent the executables of the system. Thus, an executable is a memory space in this methodology.
These memory partitions are used for grouping application components. The UML elements used in
this view are:

• UML Component for modeling the memory partition types and other Components in order to
define executables,

• UML Generalization for relating the System component of the ApplicationView with the System
component of the MemorySpaceView,

• UML Abstraction for associating application components to memory partitions.

Class diagrams are used for defining the memory partition types and for capturing the UML
generalization of the System components.

Composite structure diagrams are used for defining the memory partition instances.

Page 41 of 71

Process modelling
Memory partitions are modeled by the MARTE stereotype <<MemoryPartition>> applied on a UML
component (Figure 47):

Figure 47 Memory partitions.

The executables are defined in a System component included in the view as instances of the
MemoryPartition components previously defined (Figure 48):

Figure 48 Executables definition.

This system component is used in order to allocate the application instances defined in the
ApplicationView to the corresponding memory partitions. This System component should be specialized
by the System component defined in the ApplicationView. This specialization is modelled by means of
a UML generalization defined in a UML class diagram. Only one System component should be defined
within the Memory Space View package (Figure 49):

Figure 49 Specialization of the System component of Memory Allocation View.

By means of a UML composite structure diagram associated with the System component, the application
instances defined in the System component of the ApplicationView are mapped onto the memory
spaces. The application component instances are mapped onto memory partition instances by means
of UML abstractions specified by the MARTE stereotype <<allocate>>. So, in Figure 50, the yellow
boxes are application components that are mapped onto memory partitions.

Page 42 of 71

Figure 50 Memory partition allocation.

Composite components Allocation
When an instance of a composite component is allocated in a memory partition, all the internal instances
of such composite component are assumed to be allocated in that memory partition, provided that they
are not allocated specifically to another one.

2.5.2 SW Platform View

The SWPlatformView defines the operating systems that are in the HW/SW platform. The operating
systems are modelled by a UML component specified by the stereotype <<OS>>. The attributes
associated with this stereotype are:

<<OS>>

type:String [1]

scheduler: Scheduler[*]

drivers: DeviceBroker [*]

interProcessCommunication:
InterProcessCommunicationMechanism [1]

Table 4: Figure 58 OS stereotype attributes.

The type of the OS is defined in the type attribute (linux, windows, etc.).

The attribute scheduler defines the schedulers associated to the OS. The schedulers are
modelled by the MARTE stereotype <<Scheduler>>. In this component, the scheduling policy can be
annotated. The scheduling policy is captured in the attributes schedPolicy and otherSchedPolicy.

The attribute schedPolicy is an enumeration. The possible values considered in this
methodology are “EarliestDeadlineFirst”, “FixedPriority”, “RoundRobin”… “Other”. In the case the
value is “Other”, the scheduling policy is annotated in the attribute otherSchedPolicy.

The driver attribute of the stereotype OS enables association of DeviceBrokers with the OS
component

The interProcessCommunication attribute defines the OS services that automatically create
the communication infrastructure in order to communicate processes in the OS. Thus, code will be

Page 43 of 71

created ad-hoc depending on which mechanism is specified for each OS instance. Five types of inter
process communication mechanism are currently supported for automatic code generation. These
types are:

• FIFO channels

• Sockets

• message queues

• shared memories

• files

Using this option, designers can easily explore the performance impact that each one has on the
final implementation and select the most suitable ones for each system.

Figure 51 OS component.

Drivers
The OS components can have an associated set of drivers to provide access to peripherals or to
manage specific processing HW resources of the platform. Drivers are modelled by the MARTE
stereotype <<DeviceBroker>> applied on an UML component.

A DeviceBroker driver can have associated properties that enable well-defined driver
specification:

• Repository: denotes the address where the driver can be downloaded,

• Parameter: denotes configuration information for the driver,

• Device: is the file for the control of the HW resource.

Figure 52 Driver for DSP management.

Page 44 of 71

Repository
The “repository” property denotes the URL address of the repository where the driver can be
downloaded in order to be installed in an automatic way. This property is captured in a UML property
included in the DeviceBroker component. The name of this UML property should be “repository”. The
address is annotated in the attribute “Default Value” of the UML property, by using a UML Literal
String attached to the “Default Value” attribute.

Parameters
The “parameters” property denotes the set of parameters required for a correct configuration of a
driver. This property is captured in a UML property included in the DeviceBroker component. The
name of this UMl property should be “parameters”. Then, the set of parameters are annotated in
an attribute “Default Value” of the UML property, a UML Literal String attached to the “Default Value”
attribute.

Figure 53 Parameter driver property.

Device
The “device” property denotes the device property required for a correct configuration of a driver.
This property is captured in a UML property included in the DeviceBroker component. The name of
this UMl property should be “device”. Then, the set of parameters are annotated in an attribute “Default
Value” of the UML property, a UML Literal String attached to the “Default Value” attribute.

Figure 54 Device driver property.

Page 45 of 71

2.5.3 HW Resources View

The HwResourceView declares all the HW components required for the specification of the platform
architecture. In the ArchitecturalView, instances of the HW components declared in the HW Resources
view will be used in the capture of the HW architecture.

The UML elements used in this view are the following:

• UML Components for modeling the HW component types,

• Class diagrams are used for defining the HW components,

• HW platform architecture, which includes a hierarchical partitioning of the complete HW
architecture of the system in a single or various components, usually modeled using composite
structure diagrams, including:

• Instances of HW resources (processors, memories, buses, network, etc.),

• Interconnections among these HW resources.

The MARTE stereotypes used to specify the HW components that can be captured in the
HwResourcesView are shown in Table 5:

UML2 Diagram elements MARTE profiles MARTE stereotypes

Component HRM

HwProcessor
HwRAM
HwROM
HwCache

HwBus
HwMedia

HwEndPoint
HwBridge

HwI_O
HwISA

Table 5: MARTE stereotypes used for refining the HW platform.

Figure 55 shows a CPU with one ARM9 processor, data and instruction caches, a bus, main memory
and an I/O device:

Figure 55 HW platform resources.

Page 46 of 71

Physical Magnitudes
HW component attributes can be annotated with values, which can be either a-dimensional or represent
a physical magnitude. The value of a physical magnitude is annotated in the following way:

• ValueUnit

a. 100Mbps

b. 2KB

c. 10mW

The accepted units for each attribute and the default physical magnitude are shown in Table 6:

Attribute Physical magnitude

frequency GHz
MHz
KHz
Hz

memorySize TB
GB
MB
KB
B

wordWidth b

BandWidth Gbps
Mbps
Kbps
Bps

memoryLatency Us
Ns

power W
mW
uW
nW
pW

energy J
mJ
uJ
nJ
pJ

blockSize B
Words

Table 6: HW attributes and physical units.

Page 47 of 71

HW Processors
HW processors are modelled as components decorated with the MARTE stereotype
<<HwProcessor>>.

Frequency

The frequency of the processors is captured in the HwProcessor attribute frequency.

Number of Cores

The number of cores that a processor has is defined in the HwProcessor attribute nbCores.

Speed Factor

A speed factor can be associated to a processor in the HwProcessor attribute speedFactor.

TDMA Slots
The HWProcessor may have associated the number of slots when it is directly connected to a
TDM (in this case, the HW processor is assumed to have the network interface capabilities). This
property is modelled as the attribute assignedSlots: NFP_Integer. Then, the value is annotated in
the property “Default Value”.

Cache
Each HW processor could have data and instruction cache memories. Thus, each HW processor can
have associated a set of HwCaches instances. The caches can be associated to an HwProcessor by
means of the attribute caches of the stereotype HwProcessor (Figure 56). This stereotype attribute
selects the UML components that are characterized by HwCaches.

Figure 56 Associating caches to an HWProcessor.

Processor ISA
The HwProcessor can be more specifically defined by an Instruction Set Architecture (ISA). The MARTE
stereotype <<HwISA>> is applied to a new UML component. This HwISA component is associated with
the HwProcessor through the HwProcessor attribute ownedISAs. Two attributes of the HwISA
stereotype are considered in this methodology:

• family: NFP_String. Defines the ISA family type,

• ISA_Type. Specifies the ISA type.

Currently, the possible values of the family attribute are:

• DSP,

• GPU,

• CortexA9,

Page 48 of 71

• undef.

The Isa_type includes:

• RISC: Reduced Instruction Set Computer,

• CISC: Complex Instruction Set Computer,

• VLIW: Very Long Instruction Word,

• SIMD Single Instruction Multiple Data,

• Other,

• Undef.

Processor Caches
Cache memories are modelled by the MARTE stereotype HwCache. So, Table 7: shows the possible
values of the type and level attributes of the HwCache stereotype that determine the type of cache.

HwCache attribute Type of Cache

level = 1
& type = data Data cache

level = 1
&

type = instruction
Instruction Cache

level !=1
&

type = unified

Unified Cache for caches of level
more than one

Table 7: HwCache attribute values.

Figure 57 shows an example of caches components:

Figure 57 Cache components.

Additionally, the caches can be characterized with three additional attributes: the block size (specifies
the width of a cache block), the associativity and the number of sets. These caches attributes can be
specified in the attribute structure of the MARTE stereotype HwCache. The attribute structure is typed
as CacheStructure:

Page 49 of 71

HwCache attribute Attributes

structure
blockSize

associativity

Table 8: Definition of the structure attribute.

The specification of these attributes must be annotated as a string. The attributes annotation is shown
in Figure 54. The attributes are identified as “$BlockSize” and “$Associativity”. Both data annotations
are specified separated by semicolon. If blockSize has no specified unit, its value is interpreted in
Words. Else, blockSize must be annotated in B (Bytes), as shown in¡Error! No se encuentra el origen
de la referencia.:

Figure 58 Specification of the cache attributes blockSize and associativity.

The word size associated to the cache memory is annotated in a UML property named elementSize
of the HwCache component (Figure 59). When this attribute is not present, the default value annotated
is 4 Bytes. The size of the caches is defined in the attribute memorySize. The type of write policy is
specified in the attribute writePolicy. It can be writeBack or writeThrough. In the case the cache is typed
as instruction (attribute type), another attribute can be captured; the size of the address. This property
is annotated in the HwCache attribute addressSize.

Figure 59 Cache specification.

Buses
Buses are modelled by the MARTE stereotype <<HwBus>>. Different properties characterize a bus.

Word width
The property word width specifies the word width per transaction expressed in bits or bytes and
it is captured in the HwBus attribute wordWidth. It is expressed in bytes or bits. The default value
of wordWidth is 8 bytes

Page 50 of 71

Bandwidth
The property bandwidth specifies the number of transactions per second. It is captured in the
HwBus attribute bandwidth. It is expressed in bits/s, Kbits/s, Mbits/s… The default value of the
bandWidth is 1 Gbit/s.

Burst size
The property burst size denotes the number of event occurrences within a burst. It is specified in
the “blockT” attribute of the HwBus profile and it is defined as “$BurstSize=ValueUnit”, with unit in Bytes.
When this attribute is not present, the default value annotated is 8 words.

TDMA bus
For charactering a bus TDMA a set of specific properties should be captured. These properties
are captured as UML attributes of a HwBus component. These attributes are the following:

• numberSlots: NFP_Integer

• timeSlot: NFP_Duration

• capacitySlot: NFP_DataSize

• payloadSlot : NFP_DataSize

• payloadRateSlot : NFP_DataTxRate

• timeCycle: NFP_Duration

Figure 60 TDM bus component properties.

Then, in the property “Default Value” of each of the previous attributes, the individual value is
annotated.

Bridges
In order to connect busses, bridge components should be used. These elements are modelled by the
MARTE stereotype <<HwBridge>>. HwBridges only can connect HwBus component. The only property
considered is the frequency.

Memories
The memories are modelled by the MARTE stereotypes <<HwRAM>>, <<HwROM>> or
<<HwMemory>> according to the type of memory to considerer.

Memory size
The size of the memory is annotated in the attribute memorySize.

Page 51 of 71

Memory latency
The memory latency attribute is annotated as a comment on the memory component as
“$Latency=ValueUnit”.

Networks

As commented above, nodes in a network are stereotyped with <<ComputingResource>>. Nodes
communicate each other through ports stereotyped as <<CommunicationEndPoint>>. Ports are linked
by edges stereotyped as <<CommunicationMedia>>. The properties of the link will depend on the kind
of network used (i.e. Ethernet, internet, Wi-Fi, etc.). Network hierarchy is supported in the same way as
functional hierarchy.

I/O Components
The MARTE stereotype <<HwI_O>> models the HW component used as I/O system device.

HW components Functional Modes
HW components can have different associated functional modes that specify different characteristics
that define the HW component’s behavior according to a set of configuration parameters. These
functional modes are defined by attributes: frequency, voltage, dynamic power and average leakage.
In addition, the transitions among the functional modes are characterized as well. The transitions
among modes are characterized by the time consumption in the mode transition and the power
consumption in the mode transition.

In order to model these functional modes, the corresponding HW component should have
a UML state machine. In a UML state diagram, the HW component modes and the mode transitions
are captured. The HW component modes are represented as UML states specified by the MARTE
stereotype <<Mode>>. The mode transitions are represented as UML transitions specified by the
MARTE stereotype <<ModeTransition>>.

In order to characterize the functional attributes previously mentioned, some modelling
elements have been used. The first one is taken from [ASH12], specifically the stereotype
<<HwPowerState>>, in order to specify the frequency of the HW component in this mode. The
attribute Pstatic of the HwPowerState enables to capture the power consumption in idle in this
mode. The dynamic power of the mode is defined by the application of the MARTE stereotype
<<ResourceUsage>>, specifying the attribute powerPeak. In order to define the last two attributes
of a functional mode, voltage and average leakage, two UML comments should be associated with
the corresponding UML state. There, both values are annotated. All the attribute values should be
annotated as the MARTE specifies in order to define the non-functional properties (value, unit).

In order to characterize the mode transitions, the power and the time consumption have to be
defined. The time consumption is defined in the attribute setupTime owned by the stereotype
HwPowerStateTransition defined in the previously mentioned paper. The power consumption is
specified by the stereotype <<ResourceUsage>>.

Page 52 of 71

Figure 61 HwProcessor mode specification.

Power Consumption
HW components have associated static and dynamic power consumption. This value is annotated
to the HW component as a comment in the following fashion:

• Static Power: “$StaticPower=ValueUnit”, with Unit in Watts (uW, mW…)

• Dynamic Power: “$Dynamic Power=ValueUnit”, with Unit in Joules (pJ, nJ…), or in Amperes by
Hertz. If defined as the latter, another comment specifying the supply voltage of the component
should be specified as “$Voltage=ValueUnit”, with unit in Volts.

Furthermore, caches have associated two dynamic energy consumptions: the consumption of a hit
and the consumption of a miss. They are captured by adding a comment to the related cache as
“$HitEnergy” and “$MissEnergy”, using the same units as for the general dynamic power.

Files
In the same way as the files that store the implementation source-code of the applications are modeled
as UML artifacts, so the files describing the HW components. These artifacts are specified by the UML
standard stereotype <<File>>. The Artifacts are specified by a name (annotated in the attribute
“name”) and in the attribute “File name”, where the name and the extension of the file should be
included.

2.5.4 HW implementation view

Among the HRM stereotypes, there are three which correspond actual with a kind of
implementation and not to a proper HW resource. They are the following:

• HwComponent. In S3D, the HwComponent class is associated to a commercial-off-the-self
component, usually an integrated circuit. When a HW platform object is mapped to a
HwComponent is because this object is part of the architecture of the commercial device,

• HwPLD. In S3D, the HwPLD property is associated to an FPGA implementation. In that case,
the model could be used to automatically generate the HDL description (VHDL or Verilog) to be
synthesized on the FPGA,

Page 53 of 71

• HwASIC. In S3D, the HwASIC property is associated to an application-specific implementation
of the platform object in an integrated circuit. In that case, the model could be used to
automatically generate the HDL description (VHDL or Verilog) to be synthesized on the ASIC.

2.6 PSM View

2.6.1 Architectural View

The Architectural view captures the platform specific model (PSM) as a mapping of the PIM onto the
PDM. The platform specific model is captured as a single or several components containing the following
items:

• Mapping of architectural components to memory partitions or directly to OSs in case only an
executable is going to be generated on this OS,

• Mapping of memory partitions to OSs or directly to processors in case a bare-metal executable
is going to be generated on this processor,

• Mapping of OSs to processors.

The Architectural View contains the System component, i.e. a component decorated by the <<System>>
stereotype. The System component of the architectural view represents the platform specific model.
Composite structure diagrams are associated to the system component, and used to capture the
HW/SW architecture of the platform as it was shown in Figure 10 and Figure 11. Mapping is made by
means of UML abstractions decorated with the MARTE <<allocate>> stereotype.

Interfaces between the system and the environment are mapped to the high-level driver. It will
make use of the low-level driver of the HW peripheral in the corresponding OS where the interface is
going to be called. This driver should be provided apart. In S3D this information is taken from the IP-
XACT [IPXA14] description of the device.

Concrete information out the physical implementation of the HW resources can be modeled by
using the three kind of implementation alternatives considered, an FPGA (<<HWPLD>>), an ASIC
(<<HWASIC>>) or a COTS (<<HWComponent>>).

An application component can be mapped directly to an implementation alternative as shown
in Figure 62. This should be interpreted as a direct implementation in HW of the corresponding
functionality. This implies RTL synthesis, if the VHDL code for the application component is provided,
or behavioral synthesis if the C/C++ code is provided and it satisfies the additional requirements
imposed by the behavioral synthesis tool.

2.7 Verification View
The Verification View defines the structure of the system environment. The environment has to be
thoroughly defined in order to enable the execution of the performance estimation tools during the
design process with appropriate inputs.

The environment structure consists of environment components that interact with the system.
Additionally, these environment components have the associated functional elements that define their
functionality. The m ode l ing o f the environment makes use of a set of stereotypes of the UML
standard profile UTP.

Page 54 of 71

Figure 62 Application mapping for HW synthesis.

2.7.1 Environment components

The environment components represent the devices that interact with the System. The environment
components are modelled as UML components. This set of UML components is specified by
means of stereotypes included in the standard UML Testing Profile (UTP). The components that
compose the system environment are defined in a UML class diagram. These components are
specified by the UTP stereotype <<TestComponent>>, as shown in Figure 67:

Figure 63 Environment component.

Environment component Functionality
Each environment component has an associated specific functionality. This functionality is modelled
as UML components specified by the MARTE stereotype <<RtUnit>> and the UTP stereotype
<<TestComponent>>, as shown in Figure 64. The environment application components should be
included in the ApplicationView like the rest of the application components of the system.

Figure 64 Environment application components.

Page 55 of 71

All these RtUnit-TestComponent components can have the same associated modeling elements
(threads, file folder, files) as the application components. Each application component has associated
C/C++ files. These C/C++ files are file artifacts defined in the Functional View. The files should be
specified by the UML standard stereotype <<File>> and the stereotype <<ApplicationFile>>. The files
used for defining the functionality of the environment should be typed as environment=true. The
assignation of the file artifacts is done through a UML abstraction specified by the MARTE stereotype
<<allocated>> (Figure 65).

Figure 65 Environment Application components with associated Files.

Environment component structure
Each environment TestComponent component has internal parts that are the environment application
components. The internal functional structure of the environment TestComponent component is
captured by using instances of RtUnit-TestComponent application components (Figure 66) in a
Composite structure diagram associated with the environment TestComponent component.

Figure 66 Application instances of an environment component.

Environment component structure: ports
The communication is established through ports. The ports specify the required/provided interfaces
by means of which the components interact among them. The ports are specified by the MARTE
stereotype, being defined as provided or required, where an interface is associated.

The ports that have been specified by the ClientServerPort stereotype are those of the
environment component (TestComponent), as can be seen in Figure 67 (Camera TestComponent).
These TestComponent ports are connected to the internal application instance ports by using
UML connectors (Figure 71). These application instance ports have to be named similarly to the
TestComponent port that they are connected to (Figure 67).

Page 56 of 71

Figure 67 Environment Application components.

2.7.2 Environment structure

The environment structure is composed of instances of environment components connected to the
System. The environment structure is modelled in a UML component specified by the UTP stereotype
<<TestContext>>. The environment structure is modelled in a UML composite structure diagram
associated with this TestContext component. This composite structure diagram contains instances
of TestComponents and a property typed by a System component; specifically, the System component
defined in the Application View since the port that interacts with the environment is defined in this
System component included in this model view; this System property should be specified by the UTP
stereotype SUT (System Under Test).

Figure 68 Definition of the environment structure

Then, in order to define the semantics of channels among the TestComponents and the System, UML
connectors should be specified by the stereotype Channel, specifying the type of communication
media defined in the CommunicationView.

Figure 69 Generalization of Environment structure with the System component of the

MemorySpaceView.

Page 57 of 71

2.7.3 Memory allocation

The Environment elements must be allocated to memory spaces. The TestContext component
has to be associated with the System of the MemorySpaceView. This System component should be
specialized by the TestContext component defined in the VerificationView. This specialization is
modeled by means of a UML generalization defined in a UML class diagram (Figure 69).

Then, the allocation on memory spaces of the environment component (instances of TestComponent
components) can be done (Figure 70).

Figure 70 Allocation of environment component to the memory partitions.

This view is not mandatory. The reason is that the methodology considers an alternative solution.
As described above, different files can be associated with the system. Using this feature, systems
with minimal environments can be modelled directly indicating the source file with the environment
code instead of creating a complete specific view.

2.7.4 Modelling Data Dependencies

S3D supports data dependencies analysis in order to verify whether timing constraints are fulfilled or
not. In S3D methodology, data dependencies and data paths are represented with UML sequence
diagrams. For this analysis S3D uses traces generated during the execution of the application, which
are generated using the Common Trace Format [CTF13], a standardized binary trace format designed
for a fast and efficient writing while using few disk space.

Data dependencies are represented using UML Sequence diagrams and included inside the verification
view.

Different parts (i.e. component instance, that is, property) are represented with lifelines, one per part
involved in the data path to be analyzed. Lifelines are related to their corresponding properties through
the “Represents” box, as can be seen in Figure 71.
An execution of a service or function is represented over the lifeline with an Action Execution
Specification. Since a specific part (component) can only have one main function, if the Action Execution
is not pointed by a service call, it will unequivocally represent the main function of the component. On
the contrary, if the Action Execution is directly pointed by a service call, it represents that specific service
in question. For periodic functions, each Action Execution represents one iteration of the total run of the
service.
Service calls are represented using Message Sync/Async. Synchronous messages are represented with
filled arrows, while asynchronous messages are depicted with empty arrows. Both can be used, since
the synchronicity does not depend on the type of the message, but on the operation properties.
Synchronous messages only allow adding a temporal restriction about when the service is requested

Page 58 of 71

from the client, while asynchronous messages also enable specifying when the server executes the
service.
Furthermore, is important to consider that synchronous messages coming from an Action Execution can
only point to another Action Execution, whereas asynchronous messages can point directly to the
lifeline. Thus, a call pointing to the lifeline and one pointing to an Action Execution which finishes without
producing any call are identical in terms of data path analysis, and if not required, the omission of
irrelevant Action Execution boxes is recommended for diagram simplicity. Let us use the following
diagram to illustrate this.

Figure 71 Linkage of lifelines to parts

As shown in Figure 72, first Action Execution represents the run of the main function of sens_c1
component. This function makes a synchronous call to service trSensorData from loc_c1 component,
passing the resulting data to the main function of loc_c1. This main function makes an asynchronous
service call to trHighFreqBCP, which passes resulting data to the main function of loc_c2. Both
trSensorData and trHighFreqBCP are executed, but since trHighFreqBCP is executed from an
asynchronous call, its Action Execution box can be omitted, simplifying the diagram. Therefore, if
possible, asynchronous calls are recommended.

When placing the messages from the client to the server lifelines, a pop-up will appear asking
for the operation requested. If the operation has already been specified in the Component (or its
generalizations, or the generalizations of its generalizations, i.e. components or interfaces), it will appear
in the list.

Page 59 of 71

Otherwise, a new operation should be created, placing the name of the operation as shown in
Figure 74. Note that, in that case, you also have to navigate through the model to edit the new operation
just created, in order to add its details (i.e. function arguments).

Figure 72 Action Execution Specification usage

Figure 73 Existing message operation assignment

Once all service calls have been placed in the diagram, a Time Constraint must be added at the
beginning of the last Message of the chain, and maximum and minimum time values are specified as
described in Figure 75 (use a LiteralString value, as shown).

It is important to notice that the Y coordinate of the diagram (vertical) corresponds with time (or
causality). The order of the calls in the diagram must correspond with its requested execution during
real operation: if call to A must happen before call to B, A must be higher than B in the diagram.

Page 60 of 71

Figure 74 Creating new message operation assignment

Figure 75 Time constraint specification in the sequence diagram

3 S3D System Modeling under different MoCs

In this document, the modeling of interfaces among functional components in the S3D framework is
described. The goal is to provide the system engineer with a flexible modeling infrastructure able to
support different system engineering methodologies. Although in S3D the fundamental object is the
hierarchical component, and, as such, it is a Component-Based System Modeling (CBSM) framework,
S3D can support other system modeling paradigms like Object-Oriented Modeling or Actor-Oriented
modeling in a uniform and unified way.

Page 61 of 71

3.1 Object-Oriented Modeling

In Object-Oriented Modeling (OOM2), the system is conceived as a collection of objects. Objects are
instantiation of classes, which encapsulate data and methods. No restrictions are put on the way the
objects interact among them, either by calling methods from other objects or global and static variables.
Concurrency is not made explicit. Thus, a class may trigger a large number of threads or may be a
passive unit implementing methods to be called from external objects. As the main communication
mechanism is the function call waiting for the returning data, active threads jump from one object to the
other freely. This makes very difficult to analyze the actual behavior of the system being modeled. As
each object may interact with any other, understanding the active threads in the system is not easy. In
the same way, apart from inheritance, hierarchy is not visible in many cases. This makes OOM hardly
scalable and reusable. The problem with this kind of SW modeling have been highlighted many times
[Lee06].

Nevertheless, S3D CBSM can support OOM directly as components are objects and can be
used as such when the restrictions to the communication and synchronization mechanisms among
components are released. A CBSM methodology such as S3D, imposes conditions to the objects in
order to be considered as components. While an object does not have any restriction in the way it
interacts with other objects, a component encapsulates functionality and interact with other components
using explicit communication interfaces.

3.2 Actor-Oriented Modeling

In Actor-Oriented Modeling (AOM3), the system is conceived as a collection of concurrent components
called actors. Actors encapsulate data and functionality and interact each other through predefined
communication patterns, which may lead to concrete Models of Computation [LeNe04]. Actor-Oriented
modeling intends to highlight ‘concurrency, temporal properties, and assumptions and guarantees in the
face of dynamic system structure’. Although it is more restrictive than OOM, the benefits that AOM
provides justify its use. Examples of AOM frameworks and languages are Simulink4, Labview5,
Modelica6, VHDL [TTOV97], Verilog7, SystemC8, and Ptolemy9.

3.3 Interface modeling
In this document, we will show that the S3D CBSM can model systems in a general and unified way
able to support both OOM and AOM under different Models of Computation [LeSa96]. This is achieved
by defining the properties of the functions in the provided/required interfaces. In some cases these
properties my affect partly the programming of the component.

In the most general case, a required interface will call an interface function:

InterfaceFunction(X1, … Xn, Z1, … Zm);

2 https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
3 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.230.1295&rep=rep1&type=pdf
4 https://es.mathworks.com/products/simulink.html
5 http://www.ni.com/en-us/shop/labview.html
6 https://openmodelica.org/
7 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1620780
8 http://accellera.org/downloads/standards/systemc
9 http://ptolemy.eecs.berkeley.edu/ptolemyII/

Page 62 of 71

Where Xi are the input variables to the function and Zi are the output variables. Output variables
are those that are changed as a consequence of the execution of the function. Input variables are those
that may affect the final value of an output. Input variables can be passed by values or by reference.
Output variables can only be passed by reference. An actual parameter can be used as input and output
to a function simultaneously:

Xi ≡ Zj

3.3.1 Properties of the services of the interface

Each interface function is stereotyped as a Real-Time service (‘RtService). Its properties are defined by
the following attributes:

The enumeration ‘ConcurrencyKind’ of the ‘concPolicy’ attribute [0..1].
The ‘ConcurrencyKind’ enumeration has three possible values:

reader. The execution of the service has no side effects. Consequently, the service can be provided
concurrently to any other reader service (with the concurrency limit defined by the srPoolSize attribute
of the corresponding component).

writer. The execution of the service may have side effects. Consequently, once the service is provided
any call to any other service should be blocked.

parallel. The service can be provided concurrently (with the concurrency limit defined by the srPoolSize
attribute of the corresponding component).

The enumeration ‘CallConcurrencyKind’ of the ‘concurrency’ property [1] = sequential.
Any MARTE RtService is an UML ‘BehavioralFeature’ and, as such, inherits the enumeration
‘CallConcurrencyKind’ of the attribute ‘concurrency’:

sequential. No concurrency management mechanism is associated with the BehavioralFeature and,
therefore, concurrency conflicts may occur. Instances that invoke a ‘BehavioralFeature’ need to
coordinate so that only one invocation to a target on any ‘BehavioralFeature’ occurs at once.

guarded. Multiple invocations of a ‘BehavioralFeature’ that overlap in time may occur at one instance,
but only one is allowed to start execution. The others are blocked until the performance of the currently
executing ‘BehavioralFeature’ is completed.

concurrent. Multiple invocations of a ‘BehavioralFeature’ that overlap in time may occur to one instance
and all of them may proceed concurrently.

The following table resumes the behavioral interpretation for all the combination possibilities of
the two attributes. As a result, regarding how many services can be attended in parallel in the port, the
12 possibilities can be reduced to only two:

G: Only one call to the service can be attended each time.

C: As many calls of the service can be attended in parallel as determined by the srPoolSize
attribute of the corresponding component.

As the ‘concPolicy’ attribute can also be applied to a PpUnit with the ‘CallConcurrencyKind’ enumeration,
the value given to the PpUnit attribute will prevail to the value given to the attribute ‘concurrency’ of any
RtService in any interface of the RtUnit.

Page 63 of 71

 concPolicy: ConcurrencyKind [0..1]

 reader writer parallel none

co
nc

ur
en

cy
: C

al
lC

on
cu

rr
en

cy
K

in
d

[1
..1

]

sequential

G: Only one call
to the service is
attended each

time. The
service can be

executed in
parallel to other
‘reader’ services

in the same
interface or

another in the
same

component

G: Only one call
to the service is
attended each

time. The
service cannot
be executed in
parallel to any
other service in

the same
interface or

another in the
same

component

C: Parallel calls to
the service can be
attended but the

service cannot be
executed in

parallel to any
other service in

the same
interface or

another in the
same component

G: Only one call
to the service is
attended each

time. The service
cannot be

executed in
parallel to any
other service in

the same
interface or

another in the
same component

guarded

G: Only one call
to the service is
attended each

time. The
service can be

executed in
parallel to other
services in the
same interface

or another in the
same

component

G: Only one call
to the service is
attended each

time. The
service cannot
be executed in
parallel to any
other service in

the same
interface or

another in the
same

component

G: Only one call
to the service is
attended each

time. The service
can be executed

in parallel to other
services in the

same interface or
another in the

same component

G: Only one call
to the service is
attended each

time. The service
cannot be

executed in
parallel to any
other service in

the same
interface or

another in the
same component

concurrent

C: Parallel calls
to the service

can be attended
and the service

can be executed
in parallel to any
other service in

the same
interface or

another in the
same

component

C: Parallel calls
to the service

can be attended
but the service

cannot be
executed in

parallel to any
other service in

the same
interface or

another in the
same

component

C: Parallel calls to
the service can be
attended and the
service can be

executed in
parallel to any
other service in

the same
interface or

another in the
same component

C: Parallel calls to
the service can
be attended but

the service
cannot be

executed in
parallel to any
other service in

the same
interface or

another in the
same component

Table 9: Interpretation of the combinations of concurrency-related attributes.

The enumeration ‘ExecutionKind’ of the ‘exeKind’ attribute [0..1].
The ‘ExecutionKind’ enumeration has three possible values:

deferred. The call to the service is stored in the queue of the behavior attached to the service.

remoteImmediate. The execution is performed immediately by the computing resource on which the
called component has been mapped.

Page 64 of 71

localImmediate. The execution is performed immediately by the computing resource on which the
calling component has been mapped. This possibility is not yet considered.

The Boolean attribute ‘isAtomic’ [1] = false.
When true, implies that the RtService executes as one indivisible unit, non-interleaved with other
RtServices. This attribute does not affect the model of computation involved in the
communication/synchronization mechanisms of the components.

The enumeration ‘SynchronizationKind’ of the ‘syncKind’ attribute [0..1].
The ‘SynchronizationKind’ enumeration has four defined values:

synchronous. The client waits for the end of the invoked behavior before continuing its own execution.

asynchronous. The client does not wait for the end of the invoked behavior to continue its own
execution.

delayedSynchronous. The client continues to execute and will synchronize later when the invoked
behavior returns a value.

rendezVous. A behavior in the server waits for the client to start executing.

3.3.2 Properties of the provided port

In case any of the RtServices of the interface is attributed with an execution kind ‘deferred’, then the
provided port will provide a buffer to store the calls in the queue. The port will be stereotyped as
‘StorageResource’ and their properties defined by the following attribute:

The integer attribute ‘queueSize’ [0..1].
The integer value fixes the maximum size of the queue.

The not standard enumeration ‘FullPoolPolicyKind’ of the not standard ‘fullPoolPolicy’ attribute [0..1].
The ‘FullPoolPolicyKind’ enumeration has five defined values:

block. The call is not stored until a previous call is attended and a free position in the pool made
available.

removeFirst. The first call to be attended depending on the scheduling policy selected is removed and
the new call stored.

removeLast. The last call to be attended depending on the scheduling policy selected is removed and
the new call stored.

flush. All the previous calls are removed from the FIFO and the new call stored.

other. Any other scheduling policy.

3.3.3 Properties of the required port

When a required port calls a service, the call can be attended or not. The following attribute specifies
the policy to follow in that case:

The enumeration ‘PoolMgtPolicyKind’ of the not standard ‘notAttendedService’ attribute [0..1].
The ‘PoolMgtPolicyKind’ enumeration has four defined values:

infiniteWait. If the call is not attended, the client component waits indefinitely until the call is attended.

Page 65 of 71

timedWait. If the call is not attended, the client component waits for bound time until the call is attended.
At the end of the waiting time, if the call is not attended the behavior is determined by the ‘retry’ attribute.

dynamic. If the call is not attended, the client component continues execution.

exception. If the call is not attended, the client component raises an exception.

other. Any other policy.

The integer attribute ‘retry’ [1] = 0.
The integer value fixes the number of times the client will repeat the call. If the call is not attended in
any case, the client raises an exception which will determine the policy to follow.

3.4 Models of Computation
Depending on the properties defining the services and the provided and the required ports, different
programming models corresponding to different Models of Computation (MoC) can be supported. Some
fundamental MoCs require strict point to point synchronization/communication interfaces, that is, each
interface involves a single provider component and a single required component. We will address them
next. More complex communication interfaces will be addressed afterwards.

3.4.1 Point to point interfaces

Function Call/RPC/RMI
Under the Function Call (FC) MoC, the calling thread is stopped until the required function call is
attended and the output data read as shown in Figure 76. Nevertheless, in order to avoid deadlocks, a
timeout can be defined.

Figure 76 RPC MoC.

Table 10: shows the different alternatives. The RtService can be guarded or concurrent. In the second
case, the server may attend several calls from the same component by parallel threads or several times
the same service if repetitive calls are not filtered.

Required Port RtService Provided Port
MoC NotAttendedService retry concurrency exekind syncKind queueSize FullPoolPolicy

infiniteWait none G or C rem.Im. sync. none none exactly once
infiniteWait none G or C rem.Im. async. none none at most once

dynamic none G or C rem.Im. sync. none none exactly once

Page 66 of 71

dynamic none G or C rem.Im. async. none none at most once
timedWait 0 G or C rem.Im. sync. none none exactly once
timedWait 0 G or C rem.Im. async. none none at most once
timedWait ≠ 0 G or C rem.Im. sync. none none at least once
timedWait ≠ 0 G or C rem.Im. async. none none maybe once

Table 10: RPC/RMI MoC.

Rendezvous (RV)
This is the fundamental communication/synchronization pattern for the Communicating Sequential
Processes (CSP) MoC. In this case, the calling function requires the execution of the called function,
which has to be executed by a main thread in the component providing the function:

Figure 77 Rendezvous MoC.

The rendezvous ensures that two active tasks synchronize and interchange data at the same time. After
the rendezvous, both threads are free to continue execution.

In order to reduce the interaction time, the execution time of the called function should be
minimized. In most cases, the function is just instrumental to interchange data, Xi in one direction and
Zi in the opposite. In some cases in which the execution time of the required function is large, the calling
function sends the data to be processed and gets the data from the previous computation, which have
been stored by the provider component after the previous call.

CSP may lead to deadlocks. In order to avoid them, a time-out can be defined. If ‘retry’ is set to
‘0’, the calling function waits to be accepted during the timeout period. If it elapses, the function continues
execution. If ‘retry’ is set to ‘n’, the function will be called at least ‘n’ times the timeout elapses. None of
these cases corresponds to a CSP system.

The following table shows the different alternatives:

Required Port RtService Provided Port
MoC NotAttendedService retry concurrency exekind syncKind queueSize FullPoolPolicy

infiniteWait none G or C rem.Im. rendezvous none none CSP
timedWait 0 G or C rem.Im. rendezvous none none RV
timedWait ≠ 0 G or C rem.Im. rendezvous none none RV

Table 11: RV MoC.

Page 67 of 71

Data Flow (DF)
In a DF system, components communicate through data, which flow from the inputs of the system to
internal components, among them and to the outputs. Thus, interface functions do not have output
arguments. Outputs will be generated by the component receiving the data and sent, in a similar way,
to another component or to the external environment. DF communication is asynchronous. Components
may generate data and consume data at any time. This means that in the general case, a buffer is
needed to store data when, during some period, there are more date produced than consumed.

When the buffers between components never gets full (infinite capacity), DF becomes a Khan
Process Network (KPN). In real systems, buffers will have a finite size meaning that at certain points in
time they may get full. In order to keep the properties of a KPN, the calling thread should stop. This may
lead, eventually, to deadlocks.

Figure 78 Data Flow MoC.

When the interface function is called, the call is stored in the buffer to be attended afterwards. In that
case, the execution of the calling thread continues. In the KPN MoC, the ‘NotAttendedService’ attribute
is ‘infiniteWait’.

It is worth mentioning that when the execution time of the provided service is smaller than the
rate at which it is called and the provided service changes the internal state of the component (i.e. a
write function writing a data to be consumed by an internal thread in the component), the DF mechanism
so defined does not ensure that a write-write race may occur. If this is the case, the providing RTService
should be annotated as ‘rendezvous’.

If the component behaves as an actor in which its internal behavior is executed each time a
certain number of interface functions in its inputs have been called generating in each output a certain
number of function calls, the MoC becomes Synchronous Data Flow (SDF). Depending on how many
data are consumed (produced) in each input (output) each time, several variants of the fundamental
SDF appear. If the number of data consumed (produced) in each input (output) is constant, the MoC is
called multi-rate DF, regular DF or just SDF. A special case is when the rate in all the inputs and outputs
is the same. The MoC in this case is called single-rate DF. If these rates change but following a static
cyclic sequence of constant values, then the MoC is called cyclo-static DF. In all these cases, it is
possible to find a static scheduling minimizing the required buffer sizes. This is not possible in the case
of dynamic rates in dynamic Data Flow (DDF) systems [BELP96].

Page 68 of 71

The maximum number of function calls to be stored is defined with the attribute ‘queueSize’. It
may happen that a higher production than consumption rates produces the buffer to get full. The policy
to follow in that case is determined by the ‘fullPoolPolicy’ attribute. If the policy is ‘block’, and a new data
is produced, the component is blocked until the buffer is read and, therefore, new free space is made
available. The way around, if the thread in the provided component tries to read from an empty buffer,
it is blocked until new data are produced and written. In both cases, a deadlock may be produced.

There are two ways to avoid deadlocks. The first one is to choose any other ‘FullPoolPolicyKind’
value. In this case, no new call is blocked but previous calls might be lost. The other possibility is to
specify a timeout. In that case, if the timeout elapses, then the call is aborted if ‘retry = 0’ or a new call
is tried if ‘retry ≠ 0’. None of these two ways corresponds to KPN or SDF models.

The following table shows the different alternatives leading to KPN, SDF or simple DF:

Required Port RtService Provided Port
MoC NotAttendedService retry concurrency exekind syncKind queueSize FullPoolPolicy

infiniteWait none G or C deferred async. > 0 block KPN/SDF
infiniteWait none G or C deferred async. > 0 (any other) DF

dynamic none G or C deferred async. > 0 any DF
timedWait 0 G or C deferred async. > 0 any DF
timedWait ≠ 0 G or C deferred async. > 0 any DF

Table 12: DF MoC.

Discrete Event (DE), Time-Triggered (TT), Timed Data Flow (DTF)

In DE10 systems, components react to events in their inputs. An event is an instantaneous indication to
trigger a reaction. In S3D this can be modeled with an interface function without arguments, such as:

Notify();

In some cases, an event is a change in the value of a data. In some other cases, just the writing of a
data with a new value even if it is the same as the previous one may be considered an event. It may
happen that in case the receiving component it not available at the instant the event is notified, it get
lost.

DE systems may be non-deterministic producing different results depending on which
component is executed first when two simultaneous events occur triggering both. In order to avoid non-
determinism in DE systems, a global control component can be used. The functional components
divides its behavior in two phases. In the first one, the component reacts to the events in the inputs and
compute results. In the second phase, it up-dates values in the outputs. The control component is in
charge of synchronizing the evaluation-update phases of all the components.

In the TT11 MoC, the moment in which each component reads the inputs and the time in which
it delivers the outputs are known in advance. In some cases, a clock is used in order to synchronize the
input and output times of all the components.

The Timed-Data Flow (DTF) MoC is basically a TT MoC in which the frequency of each
component may by different depending on the input and output rates. This is the MoC used by many
analog simulators like Modelica, Simulink and SystemC-AMS. In order to accelerate simulation, the

10 https://pdfs.semanticscholar.org/5a22/af628426a44c0bcbddd26b4c31c44a99af35.pdf
11 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=739743

Page 69 of 71

frequency of the underlying clock in each component can be decided dynamically, leading to the
Dynamic Timed Data Flow (DTDF12) MoC.

The following is the representation of the interfaces in DE, TT and TDF:

These systems requires no blocking attributes at dispatching and returning and no buffering in the
provided interface:

Required Port RtService Provided Port
MoC NotAttendedService retry concurrency exekind syncKind queueSize FullPoolPolicy

dynamic none G or C rem.Im. async. none none DE/TT/TDF

Figure 79 Discrete-Event, Time-Triggered and Timed Data-Flow MoCs.

Synchronous Reactive (SR)
In a SR system, the activity in the inputs, in our case, the calls for required functions, trigger the internal
activity among components until the system reaches a stable state in which no further function calls are
made. This time, which in reality will be finite, is considered cero and all the activities performed are
considered synchronous each other. Only then, new activities in the inputs are allowed. From this point
of view, this model of computation does not impose any restriction to the properties in components and
interfaces.

12www.accellera.org/images/resources/articles/amsdynamictdf/Whitepaper_SystemC_AMS_Dynamic_TD
F_September_2011.pdf

Page 70 of 71

4 References

[Amb15] S. Ambler: “Single source information: an Agile best practice for effective documentation”,
2015, http://agilemodeling.com/essays/singleSourceInformation.htm.

[ASH12] T. Arpinen, E. Salminen, T.D. Hämäläinen & M. Hänniikäinen. “MARTE profile extension for
modeling dynamic power management of embedded systems”. JSA, April, 2012, pp.209–
219.

[BELP96] Bilsen G., Engels M., R. Lauwereins R. and Peperstraete J.A. (1995) Cyclo-static data flow.
International Conference on Acoustics, Speech, and Signal Processing. IEEE.

[BCW12] M. Brambilla, J. Cabot & M. Wimmer. “Model-Driven Software Engineering in Practice”,
Morgan&Claypool, 2012.

[CTF13] Mathieu Desnoyers, EfficiOS Inc., Linux Foundation. “Common Trace Format (CTF)
Specification (v1.8.2)”, 2013, https://diamon.org/ctf/

[GHH13] K. Grüttner, P.A. Hartmann, K. Hylla, S. Rosinger, W. Nebel, F. Herrera, E. Villar, C.
Brandolese, W. Fornaciari, G. Palermo, C. Ykman-Couvreur, D. Quaglia, F. Ferrero, R.
Valencia: "The COMPLEX reference framework for HW/SW co-design and power
management supporting platform-based design-space exploration", Microprocessors and
Microsystems, V.37, N.8-C, Elsevier, pp.966-80, 2013.

[HMV17] F. Herrera, J. Medina & E. Villar: "Modeling Hardware/Software Embedded Systems with
UML/MARTE: A Single-Source Design approach", in Soonhoi Ha & Jürgen Teich (Eds.):
"Handbook of Hardware/Software Codesign", Springer, 2017.

[HPP12] F. Herrera, H. Posadas, P. Peñil, E. Villar, F. Ferrero & R. Valencia: "A MDD Methodology
for Specification of Embedded Systems and Automatic Generation of Fast Configurable and
Executable Performance Models", ESWeek 2012 Compilation Proceedings,
CoDes+ISSS’12, ACM, 2012.

[HPP14] F. Herrera, H. Posadas, P. Peñil, E. Villar, F. Ferrero, R. Valencia & G. Palermo: "The
COMPLEX methodology for UML/MARTE modeling and design-space exploration of
embedded systems", Journal of Systems Architecture, V.60, N.1, Elsevier, pp.55–78, 2014.

[IPXA14] “IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP
within Tool Flows”, Accellera, 2014.

[KRB13] S. Korra, S.V. Raju and A.V. Babu: “Strategies for Designing and Building Reusable Software
Components”, International Journal of Computer Science and Information Technologies,
V.4, N.5, 2013.

[LaCo17] K-K. Lau & S. di Cola: “An Introduction to Component-Based Software Development”, World
Scientific Publishing Company, 2017.

[Lap07] P. A. Laplante: “What Every Engineer Should Know about Software Engineering”, CRC
Press, 2007.

[LaDi17] K-K. Lau & S. Di Cola S: “An Introduction to Component-based Software Development”,
World Scientific Publishing, 2017.

[Lee06] E. Lee: “The Problem with Threads”, Computer, V.39, N.5, ACM, pp. 33-42, 2006.
[LeNe04] Lee E.A. and Neuendorffer S. (2004) Actor-Oriented Models for Codesign. In: Gupta R.,

Guernic P.L., Shukla S.K., Talpin JP. (eds) Formal Methods and Models for System Design.
Springer.

[LeSa98] E. A. Lee and A. Sangiovanni-Vincentell: “A framework for comparing models of
computation”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, IEEE, 1998.

[MMRT17] “Deliverable D1.1: Industry requirements specification”, MegaMart project, 2017.

http://agilemodeling.com/essays/singleSourceInformation.htm

Page 71 of 71

[NMP17] E. di Nitto, P. Matthews, D. Petcu & A. Solberg (Eds.): “Model-Driven Development and
Operation of Multi-Cloud Applications: The MODAClouds Approach”, Springer Open, 2017.

[PHV10] P. Peñil, F. Herrera & E. Villar: "Formal Foundations for MARTE-SystemC Interoperability",
Forum on specification & Design Languages 2010, FDL'2010, IEEE, 2010.

[PNP14] H. Posadas, A. Nicolás, P. Peñil, E. Villar, F. Broekaert, M. Bourdelles, A. Cohen, M. T.
Lazarescu, L. Lavagno, A. Terechko, M. Glassee & M. Prieto: "Improving the Design Flow
for Parallel and Heterogeneous Architectures running Real-Time applications: The
PHARAON FP7 project", Microprocessors and Microsystems,V.38, I.8, Part B, pp. 960–975,
2014.

[PRV11] H. Posadas, S. Real & E. Villar: "M3-SCoPE: Performance Modeling of Multi-Processor
Embedded Systems for Fast Design Space Exploration", in C. Silvano, W. Fornaciari & E.
Villar (Eds.): "Multi-objective Design Space Exploration of Multiprocessor SoC Architectures:
the MULTICUBE Approach", Springer, 2011.

[S3D18] “Single-Source System Modeling”, umlmarte.teisa.unican.es.
[SeGe14] B. Selic & S. Gerard: “Modeling and Analysis of Real-Time and Embedded Systems with

UML and MARTE: Developing Cyber-Physical Systems”, Morgan-Kaufman, 2014.
[TAH07] B. Tekinerdogan, M. Aksit & F. Henninger: “Impact of Evolution of Concerns in the Model-

Driven Architecture Design Approach”, Electronic Notes in Theoretical Computer Science,
V.163, I.2, pp. 45-64, 2007.

[Tru06] F. Truyen: “The Fast Guide to Model Driven Architecture”, Cephas Consulting Corporation,
2006, https://www.omg.org/mda/mda_files/Cephas_MDA_Fast_Guide.pdf.

[TTOV97] LL. Teres, Y. Toroja, S. Olcoz and E. Villar: "VHDL: Lenguaje estándar de diseño
electrónico", McGraw-Hill, 1997.

[Wel16] M. Weldon. “The future X Networks: A Bell Labs Perspective”, CRC Press, 2016.

[MMW11] W. Mueller, D. He, F. Mischkalla, A. Wegele, A. Larkham, P. Whiston, P. Peñil, E. Villar, N.

Mitas, D. Kritharidis, F. Azcarate & M. Carballeda: "The SATURN Approach to SysML-Based
HW/SW Codesign", N. Voros, A. Mukherjee, N. Sklavos, K. Masselos, M. Huebner (Eds.):
"VLSI 2010 Annual Symposium Selected Papers", Lecture Notes in Electrical Engineering,
V.57, pp. 151-164, Springer, 2011.

[MVH17] F. Mallet, E. Villar, F. Herrera: "MARTE for CPS and CPSoS", in S. Nakajima, J.P. Talpin,
M. Toyoshima and H. Yu (Eds.): "Cyber-Physical System Design from an Architecture
Analysis Viewpoint: Communications of NII Shonan Meetings", Springer, pp.81-108, 2017.

	Document history
	Executive summary
	Table of Contents
	Acronyms
	1 Introduction
	1.1 System design methodology
	1.2 System modeling requirements
	1.2.1 Simplicity
	1.2.2 Scalability
	1.2.3 Separation of concerns
	1.2.4 Design-Space exploration
	1.2.5 Reusability

	2 System Modeling
	2.1 Fundamental elements
	2.1.1 Platform-Independent Model
	Generic components
	Application components
	Subsystems
	Verification

	2.1.2 Platform Description Model
	Network nodes
	Memory spaces
	Software platform
	Hardware resources
	Silicon implementation

	2.1.3 Platform-Specific Model
	Architectural mapping

	2.2 D&V Views
	2.3 Components Library
	2.3.1 Active Components
	Active Component Attributes
	The main function of an active Component

	2.3.2 Passive Components
	2.3.3 Subsystems
	2.3.4 Data Types
	Enumeration Data types
	Primitive Data types
	Derived Data types
	Structure Data types
	Array Data types

	Completely specified data types

	2.3.5 Generalization of Data Types
	2.3.6 Files
	File specification
	Association of Files, File Folders and Libraries to Generic Components

	2.3.7 Interfaces
	Generic Interfaces
	Application Interfaces
	Interface Services
	Service Arguments
	Pointer
	Reference
	Arguments Qualifier

	Interface compatibility

	2.3.8 Libraries
	2.3.9 Auxiliary Files

	2.4 Application View
	2.4.1 Components
	2.4.2 Ports
	2.4.3 Connectors
	2.4.4 Application Architecture
	2.4.5 System ports: I/O communication
	2.4.6 Periodic Application Instances
	2.4.7 System Files
	Libraries
	Files Folders
	Modeling Variables
	Modeling Variable Specification

	2.4.8 Concatenation of paths

	2.5 PDM Views
	2.5.1 Memory Space View
	Process modelling
	Composite components Allocation

	2.5.2 SW Platform View
	Drivers
	Repository
	Parameters
	Device

	2.5.3 HW Resources View
	Physical Magnitudes
	HW Processors
	Frequency
	Number of Cores
	Speed Factor
	TDMA Slots
	Cache
	Processor ISA

	Processor Caches
	Buses
	Word width
	Bandwidth
	Burst size
	TDMA bus

	Bridges
	Memories
	Memory size
	Memory latency

	Networks
	I/O Components
	HW components Functional Modes
	Power Consumption
	Files

	2.5.4 HW implementation view

	2.6 PSM View
	2.6.1 Architectural View

	2.7 Verification View
	2.7.1 Environment components
	Environment component Functionality
	Environment component structure
	Environment component structure: ports

	2.7.2 Environment structure
	2.7.3 Memory allocation
	2.7.4 Modelling Data Dependencies

	3 S3D System Modeling under different MoCs
	3.1 Object-Oriented Modeling
	3.2 Actor-Oriented Modeling
	3.3 Interface modeling
	3.3.1 Properties of the services of the interface
	The enumeration ‘ConcurrencyKind’ of the ‘concPolicy’ attribute [0..1].
	The enumeration ‘CallConcurrencyKind’ of the ‘concurrency’ property [1] = sequential.
	The enumeration ‘ExecutionKind’ of the ‘exeKind’ attribute [0..1].
	The Boolean attribute ‘isAtomic’ [1] = false.
	The enumeration ‘SynchronizationKind’ of the ‘syncKind’ attribute [0..1].

	3.3.2 Properties of the provided port
	The integer attribute ‘queueSize’ [0..1].
	The not standard enumeration ‘FullPoolPolicyKind’ of the not standard ‘fullPoolPolicy’ attribute [0..1].

	3.3.3 Properties of the required port
	The enumeration ‘PoolMgtPolicyKind’ of the not standard ‘notAttendedService’ attribute [0..1].
	The integer attribute ‘retry’ [1] = 0.

	3.4 Models of Computation
	3.4.1 Point to point interfaces
	Function Call/RPC/RMI
	Rendezvous (RV)
	Data Flow (DF)
	Discrete Event (DE), Time-Triggered (TT), Timed Data Flow (DTF)
	Synchronous Reactive (SR)

	4 References

