MegaM@RtE
S3D User’s Guide

1 Installation of Eclipse
The tool to be used in this User’s Guide is Papyrus, an Eclipse open source Model-Based Engineering

tool. Then, the first step is to install Eclipse. The version we are using is Eclipse Neon available from:

https://www.eclipse.org/neon/

The execution of the downloaded file starts an installation wizard opening a window with all the available
Eclipse Integrated Development Environments. Among them, select the Eclipse Modeling Tools (EMT):

eclipse P =

type filter text Q

Eclipse IDE for C/C++ Developers
=
' An IDE for C/C+ developers with Mylyn integration.

Eclipse IDE for JavaScript and Web Developers

,h‘@

The essential tools for any Javascript developer, incuding JavaScript, HTML, €SS,
XML languages support, Git client, and Mylyn.

Eclipse IDE for PHP Developers

g

The essential tools for any PHP developer, including PHP language support, Git
dient, Mylyn and editors for JavaScript. HTML, €SS and XML.

Eclipse IDE for Eclipse Committers

Package suited for development of Eclipse itself at Eclipse.org; based on the Eclipse
Platform adding PDE, Git, Marketplace Client, source code and developer...

Eclipse DSL Tools

e

The essential tools for Java and DSL developers, including a Java Xtend IDE, a DSL
Framework (Xtext), 3 Git dient. XML Editor, and Maven integration.

Eclipse IDE for Java and Report Developers

Java EE tools and BIRT reporting tool for Java developers to create Java EE and Web
applications that also have reporting needs.

Eclipse Modeling Tools /

The Modeling package provides tools and runtimes for building model-based
applications. You can use it to graphically design domain models, to leverage...

& &

Figure 1 EMF IDE selection.

ECSEL JU

https://www.eclipse.org/neon/

MegaM

After installation, the tool can be launched. The first decision is the selection of the ‘workspace’, the
place of reference for Eclipse.

1.1 Installation of Papyrus

The model will use several UML profiles, concretely MARTE and the S3D profile. In order to include
these profiles, the Papyrus tool will be used. Papyrus is an open-source UML 2 tool based on Eclipse
[GDP10]. In order to install it, press the ‘Help’ button and sect the ‘Install New Software’ in the menu:

& Eclipse Workspace - Modeling - Eclipse
File Edit Mavigate Search Project Run Window Help

[- ¥ EE-EN RN S=F oy i@ Welcome
B Model Explorer 53 (Z) Help Contents
4 Search
‘t}rpe filter text

Show Contextual Help
£ Thales FMS components!

Show Active Keybindings... Ctrl+5Shift+L
Tips and Tricks...
Report Bug or Enhancement...

Cheat Sheets...

2]

Perform Setup Tasks...

Check for Updates

Install Mew Software...
Installation Details

Install Modeling Components

Eclipse Marketplace...

O & & oS

About Eclipse

Figure 2 Searching for Papyrus.

If the tool does not appear among the options available, go to:

https://www.eclipse.org/papyrus/download.html

and select the site of the version corresponding with your Eclipse version, in our case:

http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/neon

Copy-paste the address in the ‘work with’ box, add it to the available sites, select all the mature Papyrus
tools available, press ‘next’ and then, just follow the installation procedure. In order to conclude the
installation process, the tool may require to be re-launched. After the installation process, the Papyrus
logo will appear in the up-left corner:

Page 2 of 38

DRt

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Eclipse_(software)
https://www.eclipse.org/papyrus/download.html
http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/neon

MegaM@Rt’

£ Eclipse Workspace - Modeling - Eclipse
File Edit Mavigate Search Project Revision Run Window Help

il @] \g% Select Aszsociated Elerments '-*;? -0 q - E

B Model Explorer &3 0% ¥ = 8

|t_~,rpn.=-_ filter text |

Figure 3 Papyrus installed.

The next step is to install the MARTE profile.

& Eclipse Workspace - Eclipse IDE

File Edit Mavigate Search Project Run Window Help

e s r Qv QD @il Bl -
B Model Explarer 53 BE% v= 0

[type filter text

2 Install [m] x

Available Software
Check the items that you wish to install. :)‘..

Work with: | http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/2018-12 ~ Add... Manage...

type filter text
Mame

Version Deselect Al
EA 000 Papyrus
A 00 Papyrus Releng Tools
[A 000 Papyrus Toolsmiths
A 00 Papyrus User Examples

16 items selected

Details
0= Outline 53

An outline is not available.

Show only the latest versions of available software Hide items that are already installed
Group items by category What is already installed?

[[]Show only software applicable to target environment

Contact all update sites during install to find required software /

@ < Back Next > Finish Cancel

Figure 4 Installing Papyrus.

1.2 Installation of the UML Marte profile

Marte is the UML profile for embedded and real-time systems on which the S3D modeling methodology
is based on. To install it, in the ‘help’ menu select the ‘Install Papyrus Additional Components’:

Page 3 of 38

& Eclipse Workspace - Modeling - Eclipse
File Edit

-

B Model Bxplorer 2 =]

Mavigate Search Project Revision Run Window

”] & Select Associated Elernents #f =

|t_',rpe filter text

Figure 5

S Ecli

File Edit Mavigate

Workspace - Modeling - Eclipse

Search Project Revision

Help
Welcome

() Help Contents
'% Search
Show Contextual Help

Show Active Keybindings... Ctrl+Shift+L
Tips and Tricks...
Report Bug or Enhancement...

Cheat Sheets...

ey

Perform Setup Tasks...

Check for Updates

Install New Software...

Install Papyrus Additional Components
Installation Details

Install Modeling Compenents

Eclipse Marketplace...

0O e & QEE &

About Eclipse

Installing Papyrus additional components.

Run Window Help

il 7D B S Select AssociatedElerments B v Q@ v Qi@ A i v Sl vt GOy Do

B Model Explorer 53

B% - c

|type filter text

& Papyrus Additional Components Discovery [m|

Papyrus Additional Components Discovery

Pick a papyrus component to install it.

3%
)

Find:

Languages

UML language extensions

&I5T

w

[

Modeler extensions

Extension of the tool

(’9 MARTE (Incubation)
2
MARTE is the language dedicated to Real Time Embedded systems

[™. EAST-ADL (Incubation)

EAST-ADL is an Architecture Description Language (ADL) for automotive
embedded systems

[] - RobotML (Incubation)

Medeling language and tools for mebile robotic applications

[0 =4 SysML (Incubation)
A Papyrus DSML for the SysML 1.4 OMG norm

O <T@ BMM (Incubation)

Modeling language and tools to specify and connect system solutions to
their intent using the BMM OMG norm

O ’*-3- Papyrus for Requirements (| by Eclipse Modeling Project, EPL @

Meodel-based Requirements Engineering w

Stable Experimental

Ll

by Eclipse Modeling Project, EPL (@

by Eclipse Modeling Project, EPL (D)

by Eclipse Modeling Project, EPL (@)

by Eclipse Modeling Project, EPL (@

by Eclipse Modeling Project, EPL (D)

)

Cancel

Figure 6

Page 4 of 38

Selecting the MARTE profile.

MegaM@Rt’

MegaM(

and then, select the MARTE profile as shown in Figure 6. The next step is to install the S3D profile which
includes some facilities required by the S3D methodology not covered by the MARTE standard.

1.3 Installation of the S3D profile.
As the S3D profile is not officially registered, it is necessary to get it from:
s3d.unican.es

select the ‘Install New Software’ option from the ‘help’ menu, as shown in Figure 2. Now, instead of

looking for on-line repositories, just ‘add’ for the file downloaded from the University of Cantabria as
shown in Figure 7. Then, proceed as in Figure 4.

1.4 Installation of the C++ IDE.

It may be also recommendable to install the IDE for the programming language to be used, in our case,
C/C++. In this way, both system engineering based on S3D and code development in C++ can be done

in the same environment just by changing the perspective. To do so, once the tool is open, press ‘help’
and then, open the ‘Eclipse Marketplace’, as shown in Figure 8.

S
File Edit Mavigate Search Project Revision Run Window Help
i e H ! QP - - - b4
I%5 Project Explorer &3 = <=.==g'>| =0

=

Available Software

Select a site or enter the location of a site. ;\‘ —

).
Work with:” “|| Add..
Find more software by working with the "Available Software Sites” preferences.
type filter text £ Add Repository ® L
Name
1@ There is no site selected. Name: | 5D | Local...
Locatien: |JEl:f\|E:_r'C:-*'SED-"U(COmmDﬂ.UpdﬂtE.SlteJEr!_f {l Archive...
e
Select All Deselect All N
()
q L 0K Cancel 3

Details

B Model Explorer 5%

Show only the latest versions of available software Hide items that are already installed

Group items by category What is already installed?

[[] Show enly software applicable to target environment
Contact all update sites during install to find required software
I:?::I

< Back Next > Finish Cancel

Figure 7 Selecting a local profile.

Page 5 of 38

Rt

http://s3d.unican.es/

9 -

& eclipse-workspace - Eclipse IDE
File Edit Mavigate Search Project Run Window Help

A< 5 I A N =R vi@viﬂgf._} Welcome

B Model Explorer 52

(7) Help Contents

|type filter text

4 Search

Show Contextual Help

Show Active Keybindings...
Tip of the Day
Tips and Tricks...

Report Bug or Enhancement...

i 3% a

Ctrl+Shift+L

MegaM@Rt’

Cheat Sheets...

Open the Eclipse Marketplace wizard

Eclipse User Storage
Perform Setup Tasks...

& ®

o

Check for Updates
Install New Software...
Eclipse Marketplace...

| I T

About Eclipse IDE
Contribute

»

Figure 8 Installing the C/C++ IDE.

In the new window, select the ‘Programming Language’ category and then search for the C/C++ IDE,
as shown in Figure 9. Once found, if you are not registered in the ‘Eclipse Marketplace’, you cannot
drag&drop the install button but you can download the installer and follow the instructions. After
installation, the IDE will have the EMF and the C/C++ perspectives available, as shown in Figure 11. It
is possible to change from one to the other making use of the buttons on the up-right corner of the IDE.

Now we are ready to start developing our system model.

Page 6 of 38

2 Eclipse Marketplace m] X

&

Search | Recent | Popular| Favorites | Installed | ;' 2019 in Focus
Fin QL | A Markets v v 6o

Featured

Eclipse Marketplace

Select solutions to install. Press Install Now to proceed with installation.
Press the "more info" link te learn more about a solution,

Vaadin Plugin for Eclipse 4.0.2

vaadin}> Promoted - Vaadin Framework is an open source Java Ul library for
creating rich web user interfaces. Using its component-hased API
developers can create stunning web... more info

by Vaadin Ltd, Apache 2.0
java J2EE web ria java ee ..

* 223 #% | Installs: 205K (1.840 last month) Install

PostScript Development Tools 1.1.0

Marketplaces

B e

PSOT is a PastScript IDE for Eclipse, including editor, debugger and
documentation, It cooperates with the Ghostscript interpreter in a
platform-independent way.... more info

b Thomas Fritsch GPI i

@ < Back Install Now > Finish Cancel
Figure 9 Searching the C/C++ IDE.

& eclipse-workspace - Eclipse IDE

File Edit Mavigate Search Project Run Window Help

[(&][e][a]]-

B Model Explorer £2

4 New Window
Editor
Appearance

|type filter text

EE Qutline 532

An outline is not available.

2 Generation of the library of components

Figure 11

Show View

Perspective
Navigation

Preferences

Figure 10

[Open Perspective

Customize Perspective...

Save Perspective As...
Reset Perspective...
Close Perspective

Close All Perspectives

>

Other...

MegaM@Rt’

) S

@-Bik-0-Q-io

= 8

S Open Perspective

.
‘ %CJC++,
Explorer

45 Debug

n Docker Teoling

@ Ecore

[Git

&Uava

@?Java Browsing
3 hy

(=" Modeling (default)

“=Plug-in Development

[i Resource

f: Sirius

éuTeam Synchronizing

[Show all

Open

Cancel

The different perspectives available.

Access to the EMF and the C/C++ perspectives.

As commented above, S3D is a component-based modeling methodology with emphasis on reusability.
In order to improve reusability, the components should be modeled independently of the concrete
application in which they are going to be used and encapsulated, along with other related components,

in a library. The library will be created as a new modeling project.

Page 7 of 38

MegaM@Rt’

2.1 Creation of a project

First, ensure that Eclipse EMF is in the Papyrus perspective. If this is not the case, follow the procedure
in Figure 10. Once in Papyrus, press the button ‘File’ in the right side of the toolbar and select ‘New’ and
‘Papyrus Project’ as shown in Figure 12:

& MegaMart_FMS - Papyrus - Eclipse
File Edit Mavigate Search Project ! 530 Run Window Help

MNew Alt+Shift+M > [,__’;' Papyrus Project
Open File... ™ Project..
4 Open Projects from File System... % Folder
Close Ctrl+W |~ Papyrus Model
Close All Ctrl+Shift+W P EBxample.
i3 S =4 Other.. Ctrl+N
Save As...
Save All Ctrl+Shift+5
Revert
Move...
Figure 12 Creating a new modeling project.

In the window which opens, select ‘UML:

& MegaMart_FMS - Papyrus - Eclipse
File Edit Mavigate S5Search Project ‘ 530 Run Window Help
]
r'ﬁv ”p:ﬁ:vov%vgﬁjv_ * o v K - -
[Project Explorer 53 BE&|le Y= O
& Mew Papyrus Project O x
Select the language of the new diagrams [_-53

Diagram Language:
UML core:

® ‘t UML
O P‘t Profile

DSML:

O _i SysML
@ < Back Mext = Cancel

Figure 13 Selecting the main language to be used.

Then, give a name to the project itself and to the model. Let us name the project as ‘Thales FMS Library’:

Page 8 of 38

& MegaMart_FMS - Papyrus - Eclipse
File Edit Mavigate 5Search Project ' ‘ 530 Run Window Help

-
rﬁvmtmr":ﬁ;voqug /ﬁv} v & vt GO v

r\.("_-,ProjectExplcrer P <E{}l ¢ Y T O

& Mew Papyrus Project

Choose your project path and the model name

=

Project name: | Thales FMS Library{

Use default location

Location: | CASED\MegaMart_FMS\Thales FMS Library

Browse...
Model file name:
|model
@ | <Back | Net> [Finsh | = Cancel |

Figure 14 Naming the Project and the Model.

and the model as ‘Thales FMS Components’:

& MegaMart_FMS - Papyrus - Eclipse
File Edit Mavigate Search Project ' ‘S3D Run Window Help
A
R NNy B A N =0T SR IR A SR I =i

[Project Explarer 52 E|& ¥= 0

& New Papyrus Project O

Initialization information —_
Select root element name and diagram kind

Root model element name:

Thales FMS Companents]

Select a Diagram Kind:

Diagram name Name
™ 44 Activity Diagram
[T U8 Class Diagram
M3 Communication Diagram
[T &1 Component Diagram
[T B Composite Structure Diagram
& ™ % Deployment Diagram
" B8 Inner Class Diagram
T & interactinn Chransisw Mianra m

Quantity

~

You can load a template:

[AUML model with basic primitive types

Choose a profile to apply

| Browse Workspace ‘ | Browse Registered Profiles

=
o=

An

@ et | [Fmsh || cancel

Figure 15 Naming the model root.

Page 9 of 38

MegaM@Rt’

Now, we are ready to start.

MegaM@Rt’

It is not necessary to select any initial diagram. Select to browse the registered profiles and
charge those to be used in the project, as shown in Figure 17. Both the MARTE and the S3D profiles
are needed. Whenever you want to know the profiles already installed, just click on the model and then
select the ‘Profile’ option in the ‘Properties’ menu, as shown in Figure 16. Finally, assign the
<<ModelLibrary>> stereotype to the created model by selecting the created folder in the Model Explorer,
locate the Profile tab and add it in the ‘Applied stereotypes’ section, as shown in .

£ Megahart_FMS - Papyrus - Thales FMS Library/model.di - Eclipse

File Edit - Diagram Mavigate Search Papyrus Project ! 530 Run Window Help
MR %I H B E) | BBl R S o

[Project Explorer 332 HE%|® = 8 moded X
(= Thales FMS Library

General
Private editor page layout

Remember last active page

%) Welcome
[T Properties 52 | o Model Validation %7 References
£a Thales FMS Components

uML Profile applications

Comments
MName

Profile @4 essyn_Profile

Advanced E% MARTE

B4 NFPs
B4 Time

T=a % GRM
B4 Allec
&4 CoreElements
&4 HLaMm
&% HRM
B HwlLegical
B4 HwComputing
&% HwCommunication
&4 HwTiming
4 HwDevice
% HwStorage
& HwMemory
=L wa

Hr Q- QIS i T

Notation Views

& (w5 2

= 0

filter

View Context

Location

://ESSYN_PROFILE/ essyn.profile.uml

://Papyrus_PROFILES/MARTE. profile.uml
Papyrus_PROFILES/MARTE.profile.uml
Papyrus_PROFILES/MARTE.profile.uml
Papyrus_PROFILES/MARTE.profile.uml
Papyrus_PROFILES/MARTE.profile.uml
Papyrus_PROFILES/MARTE. profile.uml
Papyrus_PROFILES/MARTE.profile.uml
Papyrus_PROFILES/MARTE. profile.uml
Papyrus_PROFILES/MARTE.profile.uml
Papyrus_PROFILES/MARTE. profile.uml
Papyrus_PROFILES/MARTE.profile.uml
Papyrus_PROFILES/MARTE.profile.uml
pathmap://Papyrus_PROFILES/MARTE.profile.uml
pathmap://Papyrus_PROFILES/MARTE.profile.uml
RTE.profile.uml

Figure 16 Showing the installed profiles.

Page 10 of 38

[E %]«

Version
6.2.14

MegaM@

%_;_:-_:_.:-__:_:_:p Eclipse
: . . . L]
File Edit Mavigate 5Search Project (530 Run Window Help
]
A s ;f};#\;vev'%v;@{f'v; - - = -
[7 Project Explorer 52 = <«=|'=f>| e =~ - O

& Mew Papyrus Project | O

Select root element ng

g - - - _,;
Initialization inform & Registered Profile Selection O = j}

UriL
Root model elerment nm MARTE

] SysML
Thales FMS Cempa P

47" Actionlanguage
'g‘j‘} TextualRepresentationBackup
99 Papyrus Internal
&) Standard -
&) Ecore Quantity ™
[4a Activity Dia @ OCL for UML
[T ®& (Class Diagr 530_profile

Select a Diagram Kin

Diagram nam

M3 Communig
€] Componen

' M@ Composite
= [T %y Deploymen
[T B8 Inner Class

™ & Interartine N

You can load a temp

i, i
[AUML model @ Cancel

Figure 17 Selecting the MARTE profile.

2.2 Creation of a generic component

As commented in the introduction, components in a library should be as reusable a possible. To this
goal, only the fundamental information about the component, that is, the information that will not change
from one use of the component in a project to another, is provided. Thus minimizing the modeling effort

as well. The component used in this section is going to be the generic component ‘SENS_C1’ already
described in Figure 7.

The information about the component will be encapsulated in a package. To create a package,

click with the right mouse button on the model and select ‘New Child’ and ‘Package’ as shown in Figure
18:

Page 11 of 38

S Megahart_FMS - Papyrus - Thales FMS Library/model.di - Eclip

File Edit ~P Diagram MNavigate Search Papyrus Project
!i-?' Er‘:qlﬂvm,!_{-ﬁ!q,. sazky
{(5 Project Explorer 52 =S =

» k= Thales FMS Library

B Model Explorer 54 ErEFRss ==

E Thales FMS Mrmamnnants
Show EClass information
o8 Show Refersnces
Naxvigate ¥
Mew Child >
New Relationship ¥
Bl Mew Diagram ¥
E] MNew Table ¥
Delete Delete
Undo CtrisZ
Redo Ctrie¥
o= Qutline &3 Cut Ctri+X
Mo outline for this [Copy Ctri+C
Paste Ctri=V
Profiles ¥
D Refactor »
iy Import ¥
Ly Export H
Enable write
J Validation H
fm Create Submodel
Figure 18

*
LA
=]

2

=

M <

aan

=
=

HBE% X

= [

¥

I=1 [4]
| 1=t 3l

-
-1

=
=

LR

GEBE

-

Activity
Actor
AnyRecerveEvent
Artifact
CallEvent

Elementimport
Enumeration
EnumerationLiteral
ExecutionEnvironment
Expression
FunctionBehavior
Informationitem
InstanceSpecification
InstanceValue
Interaction
InteractionConstraint

IntenvalConstraint
LiteralBoolean
Literalinteger
Literallull
LiteralReal
LiteralString
Package
Packagelmpont
PrimitiveType
Profile
ProtocolStateMachine

Generating a Package.

MegaM@Rt’

Let's give the name ‘SENS_C1'. This package will integrate all the relevant information about the
component. The first being its characteristics as a functional component, either as an active, real-time
unit creating its own thread(s) or a passive, protected unit proving services to other components. The
former is stereotyped as ‘RtUnit’. The latter as ‘PpUnit’. In both cases, click with the right mouse-button

on the component package and select ‘New Child’ and ‘Component’ as shown in Figure 19:

Page 12 of 38

£ MegaMart_FMS - Papyrus - Thales FMS Library/model.q

File Edit - Diagram Mavigate Search Papyrus
Nr-ERi% 2 EH-E-iF@ 2

[7 Project Explorer &3 H <}==;‘>| [
v (= Thales FMS Library
> <3 model

B Model Explorer 1 EE®EER
w [Thales FMS Compenents

D Srkll‘" ~4
Mavigate b

New Child >
MNew Relationship *
Mew Diagram »
Mew Table *
Delete Delete

xBEm®

Redo Ctrl+Y

F

EE

=
Undo Ctrl+Z \/\/\/

]

?

Activity

Actor
AnyReceiveEvent
Artifact

CallEvent
ChangeEvent

Class

Collaboration
Comment
Component
Constraint

DataType
DeploymentSpecification
Device

Duration
DurationConstraint
Durationinterval
DurationObservation
Elementimport
Enurmeration
EnurnerationLiteral
ExecutionEnvironment
Expression
FunctionBehavior
Informationltem

InstanceSpecification

Interface

Interval

Figure 19 Creating a Component.

] Properties 2 J Model Validation %7 References

L
A

=] «RtUnit= SENS_C1
I

B

it

I

5

UML Name [SENS_C1

Comments Is abstract ®true () false
Marte

Is indirectly instantiate: (Otrue (@) false
Profile

Is active ®true ()false

Visibility | public

Advanced

Provided Required

Use case @E !

Figure 20 UML properties of a component.

Page 13 of 38

MegaM@Rt’

MegaM(

By clicking on the component, its properties will appear in the ‘Properties’ window in the central
downside of the screen, as shown in Figure 20. The first are the UML properties. Apart from the name
of the component, the properties that can be defined are those shown in Table 14:

Property Meaning

Is abstract In the case of a Generic Component, this property should be put to ‘true’ as
the component will not be instantiated directly but used by other objects as
generalizations

Is indirectly instantiated In the case of any leaf component (not hierarchical), this property should
be put to ‘false’ as their instances will be instantiated directly

Is active Being a ‘RtUnit’, this property is ‘true’

Provided Here is where the services that the generic component provides should be
listed. Unfortunately, this does not work in this version of Papyrus

Required Here is where the services that the generic component requires should be
listed. Unfortunately, this does not work in this version of Papyrus

Use case Here is where the specific use cases to verify the component are linked

Table 1:UML Properties of a component.

The ‘Profile’ option in the menu will allow us to assign to it the desired properties by applying the
corresponding stereotypes. The most important, its character of ‘RtUnit’, as shown in Figure 21:

5] Properties 5 | of Model Validation %7 References A B ¥ = B
p 5 I *}]

=] «RtUnit= SENS_C1
RtUnit

umL N
5r pool waiting time || |

Comments

Marte Msg mazx size | |

Profile

Advanced

Memory size | |

ls main Oitrue (@) false Is dynamic @ true (O false
Sr pool size | 0 Queue size | 0 |
Queue sched policy EarliestDeadlineFirst v Sr pool policy infiniteWait W
Main <Undefined> .o Operational mede <Undefined>

Figure 21 MARTE properties of a component.

In our case, only the ‘RtUnit" MARTE stereotype has been used. The properties to define are those
shown in Figure 21. Its meaning is described in Table 14.

Most of the properties are implementation requirements and therefore, these properties,
usually, have no meaning in a generic component and should be specified, if required, in their
instantiations. The next step would be to declare the main function of the component. To do it click with
the right-button of the mouse on the “<<RtUnit>> SENS_C1” component and select ‘New Child-
>Operation’ as shown in Figure 23. In our case, the main operation of SENC_C1 is ‘void
main_sens_C1().

Table 15 lists the properties associated to an operation in general, and their use in the case of
the main operation of a generic component.

Page 14 of 38

MegaM@Rt’

S
File Edit Diagram Navigate Search Papyrus Project 530 Run Window Help
Byl R % 2 E BB o | B BB s s Wy o Bl - Q- QRi A~
[Project Explorer 5% = <F«:‘bl @ T 5 O 7@ modeldi I
~ [= Thales FMS Library General
=¥ model
Private editor page layout
[/] Rernember last active page
-
Applicable Stereotypes: Applied Sterectypes:
Stereotype Information K RtUnit
arm MARTE: MARTE_DesignMo.
located MARTE: MARTE_Foundatio.
annelTypeSpecific.. essyn_Profile:ChannelTyp..
ockResource MARTE:: MARTE_Foundatic. =
ockType MARTE: MARTE_Foundatio.
mmunicationEndP... MARTE:MARTE_Foundatio. =}
mmunicationMedia MARTE:MARTE_Foundatio.
mputingResource MARTE:: MARTE_Foundatio.
= oncurrencyResource MARTE:MARTE_Foundatic.
Bl Model Explorer 32 EE@WEBEE Y8 ||= v - v
< >
~ =1 Thales FMS Components
~ B3 SENS_CT [Reunif
=] SENS_C1
TE Library Cancel
rarys UML Primitiv

Figure 22

Assigning the stereotype ‘RtUnit’ to the component.

Property

Meaning

Sr pool waiting time

Period of time the unit has to wait for a schedulable resource to be released
and a new thread activated

Msg max size

Maximum size of the messages received by the unit

Memory size

Amount of static memory required for each instance of the real-time unit to
be placed in an application

Is main This property specifies if the main operation of the component shall be
activated when the executable to which the component has been mapped is
synthesized. By default, the property should be ‘true’ in the generic
component and set to ‘false’ in any of the instantiations, if so decided
Is dynamic If true, it denotes that the real-time unit creates dynamically the

schedulable resource required to execute each new service. If false, the
real-time unit owns a pool of schedulable resources to execute its services

Sr pool size

Size of the schedulable resource pool of the real-time unit

Queue size Size of the message queue for services
Queue sched policy Scheduling policy for the scheduled resources
Sr pool policy Policy to follow when no schedulable resource is available

infiniteWait No time-out

timedWait Limit of waiting time
Dynamic A new schedulable resource is generated dynamically
Exception An exception is raised when no schedulable resource is

available
other Any other policy
Main

Main function of the real-time unit. Only one main function can be specified

Operational mode

State machine representing the different configurations of the unit

Page 15 of 38

Table 2: MARTE properties of a component.

MegaM@Rt’

2.2.1 Component datatypes and interfaces

The next step is the definition of the data types used in the model of the component. Usually the data
types with which the component communicates with its environment.

& MegaMart_FMS - Papyrus - Thales FMS Library/model.di - Eclipse

File Edit - Diagram Mavigate Search Papyrus Project CS3D o Activity »
. % Actor
- ’Jv M - - — - -gb
* A Sie H:iRg =Rk 3 | | “7 T4, AnyReceiveEvent
l*5 Project Explorer 3 =h=3 | =8 “Pm Artifact
~ = Thales FMS Library Ger Fg CallEvent
<3 model
B Model Explorer 52 i= T:EE ﬂ;‘? laz — <'}==€> = = B ?;T, Elernentimport
w =21 Thales FMS5 Components EE Enumeration
v B3 SENS_C) = Enumerationliteral
=] «RtUnit» SENS_C1 . -
Mavigate » [E] ExecutionEnvironment
. u+y Expression
Mew SysML Child ¥]
—| ExtensionEnd
MNew Child >
- . @ FunctionBehavior b
MNew Relationship >)
] [* Informationltem
Mew Diagram > o
[E InstanceSpecification
E] MNew Table >
12 InstanceValue
9 Delete Delete]
E] Interaction >
Undo Ctrl+Z [?] InteractionConstraint
Redo Ctrl+Y Interface
U= Qutline 2 7 Interval
== of Cut Crlex © oo .
Mo outline for this editor {Z} IntervalConstraint
[E Copy Ctrl+C
Paste Ctrl+V
Profiles ? Gl LiteralMull
g2y Import > 130 LiteralReal
Ly Export > = LiteralString
Enable write #1J OpaqueExpression
J Validation > £+ Operation
& Create Submodel F1 Package
Tg Show EClass information 57 Packagelmport
=+ Show References hd
J
Figure 23 Declaring an operation.

Data types will be included in a new package. Then, select ‘New Child’ and ‘Package’ as it was
shown in Figure 18, but now clicking with the right mouse-button on the component package. Let's call
it ‘Data Types'. The data types are included in the package by clicking with the right mouse-button on
the package and selecting ‘New Child - Data Type’ as shown in Figure 24. Then, the following windows
appear where the properties of the data type can be specified (see Table 17:).

Once the data types are specified, it is possible to declare the interfaces with which the
component will interact with its surrounding environment. The procedure is similar as above, but here
interfaces are differentiated between provided and required. Therefore, interfaces should be organized
inside the ‘Interfaces’ package in two additional packages, ‘prov’ and ‘req’, depending whether they are
provided or required by the component. Once these packages have been created, include the interfaces
in the relevant folder by selecting ‘New Child - Interface’. In this case, the properties to be fixed are

Page 16 of 38

shown in Table 18:. To create new services (operations) associated to the interface, include them as
‘owned operations’, so a new window will appear to declare the operation. Finally, to assign a parameter
to this concrete operation, include it as an ‘owned parameter’, selecting next the specific data type of

MegaM(

the parameter on the field ‘Type’. These steps are shown in Figure 25.

Property

Meaning

Is abstract

In the case of a Generic Component, this property should be put to ‘true’ as
the implementation of the function will be provided by the instantiations of
the component

Is static

In principal, it does not make sense to execute the main operation of the
generic component without instantiating it. Therefore, the usual value for
the property is, ‘false’

Is query

In principal, the main operation of the component changes its state.
Therefore, the usual value for the property is, ‘false’

Body condition

This box allows to specify constraints on the result values of the operation.
If they exist, affecting any instantiation of the component, they should be
specified here. Otherwise, they could be specified in the concrete
instantiations of the generic component

Visibility

The visibility of the main function of a ‘RtUnit’ component is ‘private’ as
the method cannot be called from the outside directly

Concurrency

The main function of a component cannot be triggered more than once
concurrently. Thus, this property should be defined as ‘guarded’

Method

If the behavior of the operation is defined by an UML diagram, this field can
point to it. In S3D the behavior is defined directly by the code in a
programming language used as action language for MARTE

Owned parameter

Here is where the input-output parameters of the function are specified.
Shows the convention to clearly state the type and direction of the
parameters shown in

Precondition If the invocation of the main operation of the generic component requires
specific constraints on the state of the system, they can be declared here
Postcondition If the completion of the main operation of the generic component produces

specific changes in the state of the system, they can be specified here

Table 3:UML properties of an operation.

2.2.2 Component file folders and diagram

The next step when defining a component is linking it with the path where its associated functional code

is located.

As before, create a new ‘FilesFolder’ package in the component, and assign the <<FilesFolder>>
stereotype to it. Inside this folder, a new package should be created per used programming language,
so the path of the code and which language is used can be defined. This is done by adding a comment
per parameter, ‘New Child > Comment’. Next, they are described in the ‘Body’ field of the comment as:

e |anguage: “$language=language;”, being language C++.

e Files path: “$path=path;”, being path the path of the file folders from the superior folder where

the UML model file is located.

Page 17 of 38

Rt

MegaM@Rt’

¢ I.i:gaMaﬂ_f M5 - Pappus - Thales FMS Library/model.di - Ex

File Edit “3 Diagram Mavigate Search Fapyrus Projp 95 Activity
= " - R 4= Actor
OrE®:N M- @-miD 8 Ty, Recouetvent
(5 Project Bxplorer 52 - | § B Artifact
w 2 Thales FMS Librany T CallEvent
73 model Ta ChangeEvent
B Clazs
B Mode! Explorer 13 EEEFALCER Collaboration
w [Thales FMS Components B Commeant
v [P 1
.:IijN.snfunn.szs_m 10 Eommpoiss
o || g 171 Constraint
By «Mode MNavigate » DataType
= Mew Child 3 = DepleymentSpecification
- Mew Relationship » | B Device A
B new Diagram ¥ g ;”j
E] Mew Table » — S ’,/f
X Delete Debate [
Unda CtreT aull LiteralNull
Redo Cri+Y 188 LiteralReal
Figure 24 Declaring a data type.

Property

Meaning

Is abstract

In the case of a Generic Component, this property should be put to ‘true’ as
the data type is intended to be used by the instantiations of the component

Visibility

Being a data type to be used by the interfaces of the component, the usual
value for the property is, ‘public

Owned attribute

Not used by any S3D tool

Table 4:Data Type properties.

Property

Meaning

Is abstract

In the case of a Generic Component, this property should be put to ‘true’ as
the interface is intended to be used by the instantiations of the component

Visibility Being a data type to be used by the interfaces of the component, the usual
value for the property is, ‘public
Protocol Not used by any S3D tool
Owned operation Here is where the services that the interface declares should be listed
Owned reception Not used by any S3D tool
Owned attribute Not used by any S3D tool

Page 18 of 38

Table 5:UML Properties of an interface.

MegaM

Name getSensorinfo
Is abstract true O false Is query true O false
Is static true O false
. Body condition <Undefined> | =+ | & Visibility public v |
@ wWelcome LocGroup | B Functi
iﬁProperties 82 | J Modelvalidatic ~ Concurrency sequential =] |
|
| £ I_Pysensors Method 9 Owned parameter & @@ﬁ 'l
uML : .
! Mams Create a new Parameter
Comments
| profile Is abstrag
| Ad d S Name *info F
| ance Visibility. v
Is exception true © false Is ordered true O false E
Pfotocol . % 3
Is stream true © False Is unigue O true false
owned of @ U@i 7’
Direction in Effect create ~
Visibility public
Fault value Undefined> o
Owned re D = + Multiplicity] v & T8 4

— Type

D_HwSensor

Figure 25

Declaring an interface operation.

Finally, a UML class diagram must be created to attach the code to the component. This is generated
by right-click on the top component, ‘New Diagram -> Class Diagram’. Then, drag the component
(associated with the <<RtUnit>> or <<PpUnit>>) and the file folders package to the diagram. Finally, the
association between the code and the component is modelled an ‘Abstraction’ relationship, located in
‘Palette > Edges - Abstraction’. Click on the files folder and then on the component, so they are finally
linked, as shown in Figure 26.

~» model.di 2

«Components
«RtUnit»
=]TRA]_R1

abstraction

Figure 26

2.2.3

Component Testing

EaC/iC++

Files folder association to component.

5 Edges <@
/ Assoclation
/ AssociationBranch
& AssociationClass
@- ContainmentLink
/ ContextLink
<" Dependency
" DependencyBranch
%%, Elementimport
/# Generalization

e ramncalinakl -

> MARTE/GQAM
(= MARTE/SRM
(& MARTE/HRM
(= MARTE/HLAM
& MARTE/GCM
(=- MARTE/GRM
(= MARTE/Time
(= MARTE/Alloc
(= MARTE/NFPs

Finally, if desired, a testing structure for each component can be defined. Create a new ‘TestData’
package and add one package per Test Suite (test architecture) to be implemented. At one point, the
Test Suite that wants to be implemented should be decorated with the <<Framework>> stereotype but

Page 19 of 38

MegaM@Rt’

remember to only have one Test Suite with this stereotype at a time. Inside each Test Suite, add a new
component (which will represent our component to be tested) and link it with the main component with
a Generalization (‘New Relationship = Generalization’). Then, create one folder per testing component,
and follow the same procedure as for creating a library component. Finally, instead of a files folder,
create a Tests folder where different tests can be included per test suite, and following the same fashion
as for the files folder, add comments per test package indicating the following parameters:

e Language: “$language=Ilanguage;”, being language C++.

e Files path: “$path=path;”, being path the path of the file folders from the superior folder where
the UML model file is located.

e Test: “$test=test;”, being test the name of the referred test (e.g. testl, test2...). If this field is not
present, this test will be used by default in all scenarios.

At this point, create the ports that connect the tested component to the testing elements as “New Child
- Port”, decorate them with the <<ClientServerQueuePort>> stereotype and select the suitable
interfaces in the provinterface’ and ‘reqinterface’ fields. This will be further explained later in Section
5.3.1.

Create a ‘TestWorld’ component and decorate it with the <<TestContext>> stereotype. Then, create one
property per component, as shown in Figure 27:

Literalinteger
LiteralNull
LiteralReal
LiteralString

LiteralunlimitedNatural

B New

«BEoompr BEEEHHEA S

Delete

+ Undo

Cut
B copy
Profiles
1 Import

1 Export

+# Validation

Figure 27 Creating a property

In order to link each property with the component it represents, select the component in the Type field
of the property, as shown in Figure 28:

Page 20 of 38

MegaM@Rt’

= Properties 52 | J Model Validation %’ References B Console 2ES =0
3 sensc1test : SENS_C1_Test
umL Name senscitest
Profile Is derived) Is derived union true O False
Advanced Is ordered) . [1 Is read only true O rfalse
Filter: |
Is static) Is unique O true false
Visibility ; w Em «ModelLibrary» FMS Library T Type I SENS_C1_Test @ 7
| ~BISENS_CI L
L 1 FJuRtUNILs SENS_C1 - Default value <Undefined> & 2
Multiplicity 1 » EdDataTypes B
1 » Blinterfaces 1
Agaregation ~ 1 TestData .| Subsetted property ik,
= ¥ 1 «Framework» TestSuite SDR-CDG E
» B2 TestComponent1
» EaTestComponent2
= laTestContext» SENS_C1_WORLD
Redefined property HMSENS_C1_Test E
¥ O TestSuite SDR-MAD
® Cancel oK
Figure 28 Linking a property to its related component

To end, create a new Composite Structure Diagram (as shown in Figure 29) inside the Test Suite and
place the TestWorld component as a global component to include all other components declared as
properties.

8 New Table
Delete

4 Undo

Formation

Figure 29 Creating a Composite Structure diagram

Then, drag these properties inside this TestWorld component and place the ports in each suitable
component instance. Make all connections by selecting ‘Palette > Edges - Connector’ and clicking on
both ports that need to be interconnected. A final diagram of a testing structure can be observed in
Figure 30:

Page 21 of 38

MegaM(Rt

«Components
«TestContext»
Z]SENS_C1_WORLD

Eg + TestEnvl [1] [z + senscltest: SENS_C1 _Test [1]

+ Cfg_GPS [1] + Cfg_GPS [1]

+ PySensors [1]

[Eg + TestEnv2: TestCo...

+ Cfg_Doppler [1] + Cfg_Doppler [1] [:l [

:| + PySensors [1]

+ Cfg_IRS [1] + Cfg_IRS [1]
+ SensorData [1] + SensorData [1]
Figure 30 Testing platform diagram

The final structure of a generic component can be observed in Figure 31 as a summary of what has

been described above:

Page 22 of 38

MegaM@Rt’

Bz «ModelLibrary» FMS Library
w[5ENS_C1
» ZJ«RtUnit» SENS_C1
¥ EaDataTypes
D_cfgAnemo
D_CFgGps
D_CFgDoppler
D_HWSensor
D_Sensor
¥ Ointerfaces
¥ Eaprov
» & |_Cfg_Gps
» & 1|_cfg_Doppler
» E1_Cfg_IRS
¥ Eareq
» & |_SensorData
» & 1_PySensors
¥ Ea«FilesFolder» FileFolders
w0/ C++
= Slanguage=C++;
= Spath=Thales_FMS_Files\Functional\sens_c1;
% <Package Merge> C/C++
/m<Abstraction> SENS_C1
[TestData
¥ Ea«Framework» TestSuite SDR-CDG
¥ B TestComponent1
¥ <]TestComponent1
5, Cfg_GPS
1, Cfg_Doppler
5 Cfg_IRS
5 SensorData
4 main_tc1()
» E1DataTypes
» EaInterfaces
¥ 1 Tesks
¥ 1 Testl
= Slanguage=C++;
= Spath=Thales_FMS_Files\TestSuites\SDR-CDG\SENS_C1\TestCompon...
= Stest=test1;
P EaTest2
» EaTestComponent2
¥ l«TestContext» SENS_C1_WORLD
Egsenscitest: SENS_C1_Test
3 TestEnv1 : TestComponent1
£z TestEnv2 : TestComponent2
» 5 <Connector>
» & <Connector>
» & <Connector>
» & <Connector>
» 5 <Connector>
w £]SENS_C1_Test
/ <Generalization> SENS_C1
5. Cfg_GPS
 CFg_Doppler
5, CFg_IRS
5 SensorData
& PySensors
Diagram SDR-CDG
» CaTestSuite SDR-MAD
Bg Diagram Functionality

Figure 31 Generic component structure.

Page 23 of 38

MegaM@Rt"

3 System modelling

In this section, creation of the global model to be studied is described. One can make use of a
component’s library, whose creation has been described above, or declare new components in this final
model. As S3D is based on flexibility and low modelling cost-effort, the first option is recommended as
much as the system allows it.

First, create a new Papyrus project and apply registered stereotypes as described in 5.2.1. Then, import
the components library which has been previously created by right-click on the root element of the
‘Model Explorer = New Relationship - Packagelmport’, and select the library package decorated with
the <<ModelLibrary>> stereotype, as shown in Figure 32 and Figure 33:

Page 24 of 38

Abstraction

New Diagram rendency
NewTable

Undo
Copy

r*1 Import
xport

Validation
Create Submodel
s information

ences
Figure 32 Importing a component’s library (1)

Target Element Selection x

CaThales_UC_v2

ModelLibrary» FMS Library

» B3 «ModelLibrary» MARTE_Library

@ Cancel OK

Figure 33 Importing a component’s library (I1)

n
/,

MegaM@Rt"

3.1 Creation of the System Views

3.1.1 Application View

Create the Application package in the main model as ‘New child > Package’ (Figure 18) and assign the
<<ApplicationView>> stereotype.

Then, create a new System component as ‘New child = Component’, and decorate it with the
<<System>> stereotype from eSSYN profile. This component will represent the whole system.

Additionally, create another package to include all the system components, which we are going to call
‘SystemComponents’, as represented in Figure 34:
B Model Explorer 2] =Eh@#lREE =0

¥ ExThales UC v2
b %7.<Package Import> FMS Library
¥ Ea«ApplicationViewn Application
P = luSystem» System
» EaSystemComponents

Figure 34 Creation of the Application view

Here, depending on whether components are imported from a component’s library or not, two possible

scenarios may appear:
e |f the component is imported from the component’s library, instantiate it as ‘New Child >
Component’, and decorate it with the relevant <<RtUnit>>, <<PpUnit>> or <<Subsystem>>

stereotype, depending on the component.

At this point, relate it with the base component using a Generalization (‘New Relationship >
Generalization’), and select the appropriate component from the library (Figure 35).

% Model Explorer & EREFRER "= o
- Thales_UC v2

» %l <Package Import= FMS Library

w P wApplicationViews Application

¥ §_uSystems System . -
- [SystemComponents Target Element Selection

b S2AREUNIES NEAR_PY

b laPplinits DB_Airports » Ea Thales_UC_v2

¥ 14REUNIES TRAJ_R1 v E= «ModelLibrary» FMS Library

b DlaSubsystems LocGroup
b ClaPpUnits FLEN_R1 wEISENS C1

» F«REUNIt» SENS_CT

P B2 DataTypes
P & interfaces
P B3 «FilesFolder» FileFolders
P B0 TestData
58 Diagram Functionality
B8 Diagram Functionality
» O3 LocGroup
» EINEAR P1
» C3 DB AIRPORTS

@ Cancel OK

Page 25 of 38

n
/,

MegaM(@

Figure 35 Generalization of a library component into the system

Next, add all the relevant ports of the component instance (‘New Child - Port’) and adorn them with the
<<ClientServerQueuePort>> stereotype from eSYYN profile, where ‘provinterface’ and ‘reqinterface’
fields can be found. In the field ‘kind’ of this stereotype, select between ‘provided’, ‘required’ or ‘proreq’
depending on whether the interface related to this port is provided, required or both by the component.
Also, assign the interfaces to the ports selecting them from the component’s library on the corresponding
field depending on whether they are required or provided by the component, as shown in Figure 36.

ClientServerPort
umL —

Comments || Kind required -

Marte P
Features spec <Undefined>

Profile =8
Advanced Provinterface % | ®||# | Reginterface @ b

@I_PySensors

Figure 36 Assignment of the interfaces to the ports

Finally, create all the component’s operations and decorate them with the <<ResourceUsage>>
stereotype. Here you can annotate best, mean and worst observed execution times in the field
‘execTime’ in the form “BOET/MOET/WOET = value; unit = unit”, and estimated energy consumption,
as shown in Figure 37.

@
L Applied stereotypes: 4_}: ig
Comments ¥ B ResourceUsage (from MARTE::MARTE_Foundations::GRM)
Marte » = execTime: NFP_Duration [*] = [BOET = 8; MOET = 15; WOET = 20; unit =ms]
Profile = allocatedMemory: NFP_DataSize [*] =[]
Advanced & usedMemory: NFP_DataSize [*] =[]

= powerPeak: NFP_Power [*] =[]

» = energy: NFP_Energy [*] = [Estimated_Energy =20 pJ]
© subUsage: ResourceUsage [*] =[]
Figure 37 ResourceUsage stereotype of an operation

To indicate temporal properties as deadlines, period, best or worst-case execution times, create a new
comment to the operation and apply the <<RtSpecification>> stereotype to it, and reference the
operation owning this comment with the property ‘annotatedElement’ (see Figure 38). Possible
properties that can be specified in the RtSpecification stereotype used by S3D are shown in Figure 39
and Table 19:

Property Field Style
Deadline relDI Deadline = 1000; unit = ms
Best / Worst case execution time rdTime BCET =1; WCET = 10; unit = ms
Periodicity occKind Periodic (Period = 1000; unit = ms)

Table 6:RtSpecification properties definition

Page 26 of 38

MegaM@Rt’

= TP_sens_c1
|

uML Body @]
Comments | [TP_sens_c1 |
Marte
Profile
Advanced | Annotated element i) & |i--£ z |

main_sens_c1 ()

Figure 38 Reference a comment to its element

= TP_sens_c1
| RESpecification

UML -
Comments | | Miss | |
Marte ;
Profile Bound dl |
Advanced
Reldl | Deadline = 200; unit =ms
Rd time | BCET = 1; WCET = 15; unit = ms
Utility |
Priority |
Abs dl |
Occkind | Periodic (Period = 200; unit = ms)
Figure 39 RtSpecification use for S3D

An example of a complete component instantiation from the component’s library is shown in Figure
40:

% Model Explorer 2| ET@HAEES Y= 0
¥ EaThales_UC w2
» 7 <Package Import> FMS Library
~ Ea«ApplicationView» Application
b = 1«System» System

¥ £ SystemComponents

¥ =S4 «REUNIt» NEAR_P1

» =]«PpUnit» DB_Airports

» =]«REUNit» TRAJ_R1

» £]«Subsystem» LocGroup

» £]«PpUnit» FLPN_R1

¥ =]«RtUnit» SENS_C1
A <Generalization> SENS_C1
@ PySensors
o CFgDoppler
o CFgAnemo
o CfgGps
o CFglrs
g SensorData

& «ResourceUsage» main_sens_c1()
=TP_sens_cl

Figure 40 Instancing components from the component’s library

Page 27 of 38

MegaM@Rt

e |f the component is directly created on the model, follow the same procedure as described in
5.2.2, creating a package for that component inside the SystemComponents package.

If your components make use of some common code (configuration files, data types, interfaces...), it is
needed that these files are reflected in the model. To do so, create a new Common Resources package
inside the system components package and decorate it with the <<FilesFolder>> stereotype. Then,
follow the procedure described above in “Component file folders and diagram” to indicate the path where
these files are located.

Next, within the System general element, components and ports should be rendered. Instantiate the
components as Properties (‘New Child - Property’). Then, specify the name of the component and
indicate which component is this property related to on the ‘Type’ field of the property and selecting it
from the previously created ‘SystemComponents’ package, as shown in Figure 28:

At this point, create the ports that connect the global System component to the environment as “New
Child > Port”, decorate them with the <<ClientServerQueuePort>> stereotype and select the suitable
interfaces in the provinterface’ and ‘reqinterface’ fields, as described above (see Figure 36).

Finally, create a diagram to represent the system application by right clicking on the Application view
package “New Diagram - Composite Structure Diagram”.

Drag the System component on the diagram, as a global component to include all other components
declared as properties:

«Components»
«System»
= System

Figure 41 Instancing the System component

Then, drag with the mouse the properties that had been previously declared inside this System
component, and the ports declared inside each component in the ‘SystemComponents’ package to each
suitable component instance. Finally, place the System ports, and make all connections by selecting
‘Palette - Edges > Connector’ and clicking on both ports that need to be interconnected. Figure 42
shows the final structural diagram for the application used in this example.

For design easiness and clarity, using different colors is recommended to differentiate elements on the
diagrams. In Figure 42 it can be noticed that provided ports are represented in yellow, required ports
are shown in green, and the global System component is in different shade of blue than other
components. These features can be modified in the Appearance tab of the properties of an element.

Page 28 of 38

MegaM@Rt’

CfgPerf NavPerf Cfgloc CfgMagvar
1 1

1 1
«Component»
«Systems
=] System

= sens cl: SENS C1

PySensors
:l NearAp

CfgDoppler

CfgGps
. SensorData
LF BCP

:| ManageDB

=1 guide c1: GUID_C1

L L L
Guidance ShowProf SetFp
Figure 42 Complete system application diagram

3.1.2 Verification View

Create the Verification package in the main model as ‘New child - Package’ and assign the
<<VerificationView>> stereotype. If you want to test different environments on your System, you can
create a package to include all these environments and assign the stereotype to the one you want to
test. Remember that there can only be one package with the stereotype assigned at a time, so if you
are switching between different verification views, remember to delete the stereotype from the previous
view.

Then, create a new World component as ‘New child = Component’, and decorate it with the
<<TestContext>> stereotype from eSSYN profile. This component will represent the ‘world’ where our
System component is placed, together with the environment components.

Next, create another package to include all the environment components, which we are going to call
‘EnvComponents’. Within this package, create one package per environment component following the
same procedure as in 5.2.2, with two exceptions:
e Each component should also be decorated with the <<TestComponent>> stereotype from
eSSYN profile, apart from the corresponding <<RtUnit>> or <<PpUnit>> stereotypes (see
Figure 44).
e Each component can have different functional codes, each one related to a test. In the
FilesFolder package, create one folder per test, and indicate with comments the language, path
and test reference, in the same fashion as described above in Component Testing (see).

Additionally, create a Common Resources package as described in the Application view if your
environment components make use of shared code.

In the World package, proceed as described in the Application view, instantiating the components as
Properties and creating a new “Composite Structure Diagram”. A global diagram with the system and
the environment components can be seen in Figure 43:

Page 29 of 38

MegaM@Rt’

«Components
«TestContexts
= 1World
5 _pilot: Pilot & system: System © sensors: Sensors
CfgIRS CfgIRS Sensors| === Profile:CI™ sensors

CfgGPS CfgGPS

Eg upDateDB: UpDateDB

CfglLoc ManageDl{j—[El MngAirportsDB

=i = display: Display
T Guidance| Guidance
CfgDoppler NearAp| NearAp
CfgMagVar ShowPro ShowProf
CfgPerf NavPe NavPerf
Figure 43 Complete verification diagram

Finally, if required, within the Verification view data create another package to define data dependencies,
an follow the procedure described in section 2.7.4 (Modelling Data Dependencies) of S3D Modeling
Methodology. Figure 44 shows the structure of the Verification view:

w ExVerification Views
w B «VerificationViews SDR-CDG_Flight
b = l«TestContexk» World
¥ B3 EnvComponents
» B Pilot
» EaSensors
» EaDisplay
¥ 3 UpDateDB
» = l«TestComponent, RtUnit» UpDateDB
» EaDataTypes
» Ealnterfaces
¥ Ea«FilesFolder» TestData
¥ 1 Test1
= $path=Thales_FMS_Files/Verification/SDR-CDG_flight/UpDateDB;
= Slanguage=C++;
= Stest=testl
P EaTest2
» Ea«FilesFolder» Common Resources
P EaDataDependencies
[E& Diagram System&Env
» E1SDR-MAD Flight

Figure 44 Verification view structure

Page 30 of 38

MegaM@

3.1.3 Memory Spaces View

Create the Memory Spaces package in the main model and apply the <<MemorySpaceView>>
stereotype.

Then, create the memory partitions needed in your application as “New Child - Component”, and
decorate them with the <<MemoryPartition>> stereotype. You will notice that the symbol of the
component changes. A structure of the memory space view can be observed in :

B Model Explorer &2 EEEEES vE O
v EnThales_UC v2
» %7 <Package Import> FMS Library
» Eaw«Applicationview» Application
¥ Ea«VerificationViewn Verification
¥ F1«MemorySpaceViews MemorySpaces
[| «MemoryPartition» CRITICAL_SW
[l «MemoryPartition» FLIGHTPLAN_SW
[l «MemoryPartition» AIRPORTDB_SW
[l «MemoryPartition» REAL_TIME_SW

Figure 45 Memory spaces view structure

3.1.4 SW Platform View

As before, create a SW Platform package and adorn it with the <<SWHPIlatformView>> stereotype.
Proceeding on the same way as in the memory spaces view, create one component per software used
in your application and assign the <<OS>> stereotype, indicating that it is an operative system.

B- Model Explorer 2 SR EE v= 0
¥ Bz Thales UC w2
» % <Package Import> FMS Library
¥ EawApplicationviews Application
P Ea«VerificationViews Verification
¥ Ea«MemorySpaceView» MemorySpaces
* Ea«SWPlatFormView» SWPlatform
= lw0OS» RTEMS 5
= 1«OS» WRLinux 10.2
= l«OS» WindowsServer2019

Figure 46 Software platform view structure

3.1.5 HW Resources View

Create the HW resources view and decorate it with the <<HWResourcesView>> stereotype. Now,
depending on the system you are designing, different scenarios may appear:

Page 31 of 38

MegaM(

e If you are designing a network system, create one component per network node and adorn them
with the <<ComputingResource>> stereotype. Then, create another component to represent
the system (use the <<System>> stereotype, and instance the different nodes by creating one
property per element and selecting the component it represents using the Type field (Figure
28).

e Ifthe system is centralized (one single computing resource), create one component to represent
the whole system and apply the <<ComputingResource>> and <<System>> stereotypes.

In our example we have two nodes (an airplane and a database) that communicate via a wireless link.
Thus, we must declare the system and both nodes in the HW resources view:

¥ EaThales_UC w2
» %7 <Package Import> FMS Library

» B «ApplicationView» Application

¥ Co «VerificationViews Verification

P Eo«MemorySpaceViews MemorySpaces

¥ Eg«SWPlatFormView» SWPlatform

¥ B «HWResourcesView» HWResources
b =]«System» FMS Network
» = Jl«ComputingResource» AIRPLANE_HW

» = J«ComputingResource» DB_SERVER

Figure 47 HW resources view creation

Then, inside the nodes, we declare each HW component that shape the node with a Property and adorn
the properties with different HW stereotypes (HwProcessor, HWRAM, HwBus...), where attributes
described in S3D Modelling Methodology 2.5.3 can be declared.

¥ = J«ComputingResource» AIRPLANE_HW
* ~Main_Memory
=1 SLatency=10ns
= SStaticPower=10mw
= SDynamicPower=10nJ
P . SystemBus
= AirplaneSensors : AirPlaneSensors [1..*]
(—NWaccess
{— Display: Display
(— Configuration Panel : Panel
* —ARM-RT : ARM-R8
=1 SStaticPower=5mw;
= $DynamicPower=1mA/MHz;
=1 SVoltage=1.2v
P —ARM-A15: ARM-A15
o DBaccess

Figure 48 Computing resource structure example

As we have two processors, we create two packages to describe these components, which are also
decorated with the <<HwProcessor>> stereotype. Inside each processor we declare its related caches,
which are linked to the processor using the Caches field of the HwProcessor stereotype. Moreover, an
HDL Folder has been created in case some extra hardware description code related to the component

Page 32 of 38

Rt

MegaM@R t

is available, so its path can be indicated. In addition, we group peripherals in a package and declare
these components inside. Structure of this HW resources view can be observed in Figure 49:

¥ O «HWResourcesView» HWResources
¥ = J«System» FMS Network
= DB_Server : DB_SERVER
= Airplane_HW : AIRPLANE_HW
» & «CommunicationMedia» Airplane link
¥ = l«ComputingResource» AIRPLANE_HW
¥/~ Main_Memory
} . SystemBus
= AirplaneSensors : AirPlaneSensors [1..*]
[—NWaccess
(— Display: Display
(— Configuration Panel : Panel
» —ARM-RT: ARM-R8
P —ARM-A15: ARM-A15
o DBaccess
» = l«ComputingResource» DB_SERVER
[ARM-R8
¥ —u«HwProcessor, HwCache» ARM-R8
» —«HwCache» InstructionCacheR8
¥ .~ «HwCache» DataCacheR8
¢ wHwCache» L2CacheR8
¥ EaHDLFolder
EaVerilog
B IP-XACT
EaTesktData
» E5 ARM-BIG
¥ EaPeripherals
Zl«HWSensor» AirPlaneSensors
([«HwDevice» Display
[«HwDevice» Panel

Figure 49 Complete HW resources view structure

Finally, diagrams representing this hardware are created as Composite Structure Diagram. As we have
two nodes, one diagram will represent the network system with these nodes and its connection:

«Component»
«System»
=]FMS Network

«ComputingResource»

«ComputingResource»
= Airplane HW: AIRPLANE HW|

= DB Server: DB SERVER

pBaccesfJ—————)] oBport
Airplane link
«CommunicationMedif»
Figure 50 Network system diagram

Page 33 of 38

The other diagram shows how the airplane hardware is structured and connected:

MegaM@Rt’

«Components
«ComputingResources
=] AIRPLANE_HW

«HWSensors
(= AirplaneSens...

«HwProcessor» «HWRAM: e«HwProcessor»
(= ARM-RT: AR... =1 Main_Memory = ARM-ALS

«HwWBUS»

«Hwl_O»

. DBaccess

3.1.6 Architectural View

= SystemBus = NWaccess
«HwDevices «HwDevice»
= Display =1 Configuration Panel
e e
Figure 51 HW platform diagram

Create the Architectural view and decorate it with the <<ArchitecturalView>> stereotype. If you want to
explore different architectures, you can create a package to include all these architectures, and then
assign the stereotype to the one you want to test, as shown in Figure 52, where we have created one
architecture with one single memory space, and another with multiple memory spaces . Remember that
there can only be one package with the stereotype assigned at a time, so if you are switching between

different architectures, remember to delete the stereotype from the previous architecture.

w B Thales UC v2
b % <Package Import> FMS Library
» Ea«ApplicationViewn Application
b Ea«VerificationViews Verification
P EauMemorySpaceViewn MemorySpaces
» E1«SWPlatformViews SWPlatform
P Eo«HWResourcesViewn HWResources
w P Architectural Views

» Ea«ArchitecturalView» SP_ArchitecturalView

» EIMP_ArchitecturalView

Figure 52 Architectural view declaration

Inside the architectural view, create the following components (‘New Child = Component’) to describe

the architecture:

1. A component, which we are calling “Airplane Mapping”, with <<System>> stereotype where OS
are instantiated as properties. Select which OS every property represents by selecting it from
the SW platform view in the Type field of the property. Additionally, other SW elements can be
declared here (drivers...).

2. A component, which we are calling “Executables”, where memory partitions are instantiated as
properties. Select which memory space each property represents by selecting it from the
memory space view in the Type field of the property.

Page 34 of 38

MegaM@

3. A component per node, which we are calling “Implementation” (in our case we have “System
Implementation” and “DB Implementation”), where physical devices (RAMs, ASICs, FPGAs, ...)
are declared as properties. Assign a relevant stereotype to each device (HwPLD, HWASIC...).

As a result, we obtain the following structure inside our architectural view:

¥ B Architectural Views
P E1SP_ArchitecturalView
¥ B wArchitecturalview» MP_ArchitecturalView
b =]uSystem» AirplaneMapping
¥ = 1Executables
¥ =T1System Implementation
¥ = 1DBimplementation

Figure 53 Architectural view structure

Related to each of the declared components, a Composite Structure Diagram should be created per
component. Notice that some Generalizations (“New Relationship - Generalization”) have to be made
toinclude elements declared in other components or views. For example, if you want to place an element
from the “Executables” component inside the “Mapping” component diagram, create a new
generalization of “Executables” in “Mapping”. Associate elements with “Abstractions” decorated with the
<<Allocate>> stereotype.

Now, following a top-down mapping structure, diagrams of our example of architecture for a
complex node (such as the airplane hardware) are going to be described to illustrate what has been
previously explained. Later, an example of a simple node (just like the remote data base) will be shown
to represent how an easy system can be condensed into one diagram.

In the diagram related to the memory partitions, components from the Application view are
mapped into the different memory spaces, as shown in Figure 54:

«Component»
= |Executables

| =l sens_c1E|—| | = locGroup Iz|—| | =l near_cl IE|—| | = flpn_rl lz|—| | =1 traj rl IE|—| | = guide_c1@—| | = dB_Airport5|z|—|

K «Allocates ;' S : L - X
Y o * . 0 «Allocates Lo Alocat J
\ ¥ *. «Allocates . L7 «Allocates
«hAllocates i «Allocates . b 5 s «Allocate» :
NI NN | v

[Criticalsw: CRITICAL SW| [=_FlightPlan: FLIGHTPLAN .| [=_AirportDB_Sw: AIRPORTDE ..

Figure 54 Mapping components into memory spaces diagram

The diagram associated with the component decorated with <<System>> stereotype (Figure 55)
describes how memory partitions are mapped into the SW elements (OS, drivers...) and in turn how
they are linked to HW elements (processors, sensors, generic devices...):

Page 35 of 38

MegaM@Rt’

NavPerf ShowProf NearAp Guidance
5] 5] [T
«Components «AHucat >
Allocate
«Systems «Allocatév . ,:Allucate»
=] AirplaneHW Mapping
EE\ Sensors

N

3. CriticalSW: CRITICAL_SW 7] = FlightPlan: FLIGHTPLAN_S\Z] -cDewceBroker»
= Display Functions
S «Allucaten
L

CfgPerf
CfgMagVar
«Allocate:q «Allocatexq .
<Allocaten «DeviceBrokers CfgDoppler
| =1 Panel SW
xDewceBmker» = RTEMS RTEMS 5 = Linux: WRLInux 10.2 V P
5 “Allocatey CfgAnemo
«HwDevices 21 <= -
= Display
xAIIocateq .g,qllgcatsg»1 xAIIocaten
v v
«HWSensor» &

SetFp
i _
V
«HwProcessors 2]
= AirplaneSensorg

cfgLoc
«HwProcessor» 2] | cf
GPS
= ARM-RT = ARM-Al5 «Allocates 9
] o
«HwDevice» 7]

= Configuration Panel

Figure 55 SW-HW mapping architecture diagram
Finally, diagrams representing final implementation will include mapping of HW elements (processors,
sensors, memories...) into the final physical devices (Figure 56 and Figure 57). For the simpler data

base node, we can shrink all diagrams into one, representing how the system is mapped from the top
component to the physical device, as shown in Figure 57

«Components
=] System Implementation
«HwProcessor» & «HWRAM:=] «HwProcessor» 1]
= ARM-RT = Main_Memory = + ARM-A15: ARM-A15 [1
«Hwl_0» 2
- xH_WSgn;::» £ © NWaccess
AirPlainSensors

k) «Allocates,’ ' i -

v ‘ '

Y 7 wAIIocate»i B ' ' «Allocates

ate
«Allocate»',) h =,]
\J b’ Y o] A «HwDevice» [
«HwPLD» «HwComponent» “HwDevice «HWASIC» (= Configuration Pa...
[E] Spartan XC35700A =] K4B2G1646F-BY... g . Eg TMSC HPL-28 &
Sy v
~ .
«Allocate»
«Allocate»
Figure 56

HW Mapping into final devices diagram

Page 36 of 38

MegaM@Rt’

«Components»
£] DBimplementation

| ©_ArportDB sw @

«pllocates)
|

|I§I windowsServer2019: WindowsServ... |

I
«Allocates
v
«ComputingResources
= DB_Server

B

«pllocates
\
«HwComputingResource»
[Eg RAX XF2-1151-5H

Figure 57 Simple system architectural diagram

Optionally, you can create a class diagram (“New Diagram - Class Diagram”) to visually represent
timing properties related to functions of the elements that are used in your application, and which have
been previously described in the Application view (Figure 38 and Figure 39).

To do so, drag the operations (<<ResourceUsage>>) and related comments (<<RtSpecification>>) from
the Application view into the class diagram. Then, place the mouse over the operation, click on the arrow
pointing the operation and drag to the related comment, as shown in Figure 58. A final diagram with all
the operations of our application is shown in Figure 59.

RtSpecification
«ResuurceUsaglgL*Tﬂ._____“ :I*'P sgns c1 "
£ main_sens_cl—0 ,{\ -
Figure 58 Association of an operation with its timing properties

Page 37 of 38

«Resourcelsage:
% run_near_pl

«RESpecific...
TP_near_pl

& add_runway

«ResourceUsages «RtSpecification»
& add_airport TP_add_airport
«Resourcelsage:

«RtSpecification»
TP_add_runway

«Resourcelsage
& add_enroute

«RtSpecification»
TP_add_enroute

& del_enroute

«ResourceUsages «RtSpecification»
3 del_airport TP_del airport
«Resourcellsages «RtSpecification»
&3 del_runway TP_del_runway

«Resourcellsage:

«RtSpecification»
TP_del_enroute

«Resourcelsage»
& getNearestAirports

«RtSpecification»
TP_getNearestAirports

MegaM(@

«ResourceUsage «RtSpecification» «ResourceUsage: «RtSpecification»

4 run_traj r1 TP_traj_rl & run_loc_cl TP_loc_c1
lResourcelsage: «RtSpecification» «ResourceUsage: ;EtISPng—'CBUGH”
4 main_sens cl| TP_sens_c1 &3 run_loc_c2 ' loc_c.

6 setActiveFlightPlan|

«Resourcelsage» |

«RtSpecification»
TP_setActiveFlightPlan

«Resourcelsage:
& run_loc_c3

«RtSpecificat...
TP_loc_c3

«Resourcelsages
8 setSecondaryFlightPlan(

i

«Resourcelsage»
3 setTemporaryFlightPlan

«Resourcelsages .
55 deleteActiveWaypoint]

«RtSpecification» «Resourcelsage «RtSpecificat...
TP_setSecondaryFlightPlan & run_loc_c4 TP_loc_c4
«RtSpecification» «ResourceUsage: «RtSpecificat...
TP_setTemporaryFlightPlan # run_guid_c1 TP_guid c1

«RtSpecification»
TP_deleteActiveFlightPlan

«Resourcelsage»
5 deleteSecondaryWaypoint]

«ResourcelUsage»
& deleteTemporaryWaypeing

«RtSpecification»
TP_deleteSecondaryWaypeint

«RtSpecification»
TP_deleteTemporaryWaypoint

«ResourceUsage:

«RtSpecification»

£ getDBRunwa

TP_getDBRunway

«Resourcelsage:

& getDBEnroute

TP_getDBEnroute

«RtSpecification» Ij

Reference

[GDP10]

Figure 59

S

«ResourceUsage»
4 secondary2ActiveFlightPlan|

«RtSpecification»
TP_secondary2ActiveFlightPlan

«ResourceUsage»
4 temporary2ActiveFlightPlan

TP_temporary2ActiveFlightPlan

«RtSpecification» IT

Timing properties class diagram

S. Gérard, C. Dumoulin, P. Tessier and B. Selic: "Papyrus: A UML2 Tool for Domain-Specific

Language Modeling". In Holger Giese et al. (Eds.): “Model-based engineering of embedded
real-time systems”, International Dagstuhl Workshop, Dagstuhl Castle, Germany, Springer,
2010, pp. 361-368, ISBN 978-3-642-16277-0.

Page 38 of 38

Rt

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-642-16277-0

	1 Installation of Eclipse
	1.1 Installation of Papyrus
	1.2 Installation of the UML Marte profile
	1.3 Installation of the S3D profile.
	1.4 Installation of the C++ IDE.

	2 Generation of the library of components
	2.1 Creation of a project
	2.2 Creation of a generic component
	2.2.1 Component data types and interfaces
	2.2.2 Component file folders and diagram
	2.2.3 Component Testing

	3 System modelling
	3.1 Creation of the System Views
	3.1.1 Application View
	3.1.2 Verification View
	3.1.3 Memory Spaces View
	3.1.4 SW Platform View
	3.1.5 HW Resources View
	3.1.6 Architectural View

	References

